• Frontiers of Optoelectronics
  • Vol. 9, Issue 2, 249 (2016)
Anjin LIU1、2、* and Dieter BIMBERG2、3
Author Affiliations
  • 1Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences,Beijing 100083, China
  • 2Institute of Solid State Physics, Technische Universit?t Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
  • 3King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia (KSA)
  • show less
    DOI: 10.1007/s12200-016-0611-6 Cite this Article
    Anjin LIU, Dieter BIMBERG. Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects[J]. Frontiers of Optoelectronics, 2016, 9(2): 249 Copy Citation Text show less
    References

    [1] Cisco. Cisco Global Cloud Index: Forecast and Methodology, 2014–2019 White Paper, http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_ White_Paper.html

    [2] TOP500 supercomputer list of November 2015, http://www.top500.org/statistics/perfdevel/

    [3] Savage N. Linking with light. IEEE Spectrum, 2002, 39(8): 32–36

    [4] Benner A F, Ignatowski M, Kash J A, Kuchta D M, Ritter M B. Exploitation of optical interconnects in future server architectures. IBM Journal of Research and Development, 2005, 49(4/5): 755–775

    [5] Coteus P W, Knickerbocker J U, Lam C H, Vlasov Y A. Technologies for exascale systems. IBM Journal of Research and Development, 2011, 55(5): 14-1–14-12

    [6] Lam C F, Liu H, Koley B, Zhao X, Kamalov V, Gill V. Fiber optic communication technologies: what’s needed for datacenter network operations. IEEE Communications Magazine, 2010, 48(7): 32–39

    [7] Borkar S. Role of interconnects in the future of computing. Journal of Lightwave Technology, 2013, 31(24): 3927–3933

    [8] Taubenblatt M A. Optical interconnects for high-performance computing. Journal of Lightwave Technology, 2012, 30(4): 448– 457

    [9] Miller D A B. Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE, 2009, 97(7): 1166–1185

    [10] Miller D A B. Rationale and challenges for optical interconnects to electronic chips. Proceedings of the IEEE, 2000, 88(6): 728–749

    [11] Bimberg D. Ultrafast VCSELs for Datacom. IEEE Photonics Journal, 2010, 2(2): 273–275

    [12] Larsson A. Advances in VCSELs for communication and sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17 (6): 1552–1567

    [13] Tatum J A, Gazula D, Graham L A, Guenter J K, Johnson R H, King J, Kocot C, Landry G D, Lyubomirsky I, MacInnes A N, Shaw EM, Balemarthy K, Shubochkin R, Vaidya D, Yan M, Tang F. VCSELbased interconnects for current and future data centers. Journal of Lightwave Technology, 2015, 33(4): 727–732

    [14] Grabherr M, Intemann S, King R, Wabra S, J ger R, Riedl M. VCSEL arrays for high aggregate bandwidth of up to 1.34 Tbps. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9001: 900105-1–900105-10

    [15] Michalzik R. VCSELs-Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Berlin: Springer, 2013, 166

    [16] Blokhin S A, Lott J A, Mutig A, Fiol G, Ledentsov N N, Maximov M V, Nadtochiy A M, Shchukin V A, Bimberg D. Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s. Electronics Letters, 2009, 45(10): 501–503

    [17] Kuchta D, Rylyakov A, Doany F E, Schow C, Proesel J, Baks C, Westbergh P, Gustavsson J, Larsson A A. 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link. IEEE Photonics Technology Letters, 2015, 27(6): 577–580

    [18] Shi J W, Wei Z R, Chi K L, Jiang J W, Wun J M, Lu I C, Chen J, Yang Y J. Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850 nm for short to medium reach (2 km) optical interconnects. Journal of Lightwave Technology, 2013, 31 (24): 4037–4044

    [19] Hanson D. Case for using 980 nm (rather than 850 nm) VCSELs for serial 10 Gb/s links with new higher-bandwidth 50 MMF.1999 [Online]. http://www.ieee802.org/3/10G_study/public/july99/hanson_ 1_0799.pdf

    [20] Chang Y C, Coldren L A. Efficient, high-data-rate, tapered oxideaperture vertical-cavity surface-emitting lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 704–715

    [21] Mutig A, Lott J A, Blokhin S A, Wolf P, Moser P, Hofmann W, Nadtochiy A M, Payusov A, Bimberg D. Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980 nm vertical cavity surface emitting lasers. Applied Physics Letters, 2010, 97(15): 151101

    [22] Wolf P, Moser P, Larisch G, Hofmann W, Bimberg D. High-speed and temperature-stable, oxide-confined 980 nm VCSELs for optical interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701207

    [23] Héroux J B, Kise T, Funabashi M, Aoki T, Schow C L, Rylyakov A V, Nakagawa S. Energy-efficient 1060-nm optical link operating up to 28 Gb/s. Journal of Lightwave Technology, 2015, 33(4): 733–740

    [24] Hatakeyama H, Anan T, Akagawa T, Fukatsu K, Suzuki N, Tokutome K, Tsuji M. Highly reliable high-speed 1.1-mm-range VCSELs with InGaAs/GaAsP-MQWs. IEEE Journal of Quantum Electronics, 2010, 46(6): 890–897

    [25] Müller M, Wolf P, Gründl T, Grasse C, Rosskopf J, Hofmann W, Bimberg D, Amann M C. Energy-efficient 1.3 m short-cavity VCSELs for 30 Gb/s error-free optical links. In: Proceedings of 23rd Semiconductor Laser Conference (ISLC), 2012, 1–2

    [26] Müller M, Hofmann W, Gründl T, Horn M, Wolf P, Nagel R D, R nneberg E, B hm G, Bimberg D, Amann M C. 1550-nm highspeed short-cavity VCSELs. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1158–1166

    [27] Moser P, Hofmann W, Wolf P, Lott J A, Larisch G, Payusov A S, Ledentsov N N, Bimberg D. 81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects. Applied Physics Letters, 2011, 98(23): 231106

    [28] Moser P, Lott J A, Wolf P, Larisch G, Li H, Ledentsov N N, Bimberg D. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s. Electronics Letters, 2012, 48(20): 1292–1294

    [29] Haglund E, Westbergh P, Gustavsson J S, Haglund E P, Larsson A, Geen M, Joel A. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s. Electronics Letters, 2015, 51(14): 1096–1098

    [30] Li H, Wolf P, Moser P, Larisch G, Mutig A, Lott J A, Bimberg D. Energy-efficient and temperature-stable oxide-confined 980 nm VCSELs operating error-free at 38 Gbit/s at 85°C. Electronics Letters, 2014, 50(2): 103–105

    [31] Moser P, Lott J A, Wolf P, Larisch G, Li H, Bimberg D. Error-free 46 Gbit/s operation of oxide-confined 980 nm VCSELs at 85°C. Electronics Letters, 2014, 50(19): 1369–1371

    [32] Kuchta D M, Rylyakov A V, Schow C L, Proesel J E, Baks C W, Westbergh P, Gustavsson J S, Larsson A A. 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90°C. Journal of Lightwave Technology, 2015, 33(4): 802–810

    [33] Tan F, Wu C H, Feng M, Holonyak N Jr. Energy efficient microcavity lasers with 20 and 40 Gb/s data transmission. Applied Physics Letters, 2011, 98(19): 191107

    [34] Wu C H, Tan F, Feng M, Holonyak N Jr. The effect of mode spacing on the speed of quantum-well microcavity lasers. Applied Physics Letters, 2010, 97(9): 091103

    [35] Coldren L A, Corzine S W. Diode Lasers and Photonic Integrated Circuits. New York: Wiley, 1995

    [36] Westbergh P, Gustavsson J S, K gel B, Haglund , Larsson A. Impact of photon lifetime on high-speed VCSEL performance. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1603–1613

    [37] Mutig A, Bimberg D. Progress on high-speed 980nm VCSELs for short-reach optical interconnects. Advances in Optical Technologies, 2011, 2011: 290508

    [38] Moser P, Wolf P, Mutig A, Larisch G, Unrau W, Hofmann W, Bimberg D. 85°C error-free operation at 38 Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers. Applied Physics Letters, 2012, 100(8): 081103

    [39] Li H, Wolf P, Moser P, Larisch G, Mutig A, Lott A, Bimberg D H. Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs. IEEE Journal of Quantum Electronics, 2014, 50(8): 613– 621

    [40] Zhou W, Zhao D, Shuai Y C, Yang H, Chuwongin S, Chadha A, Seo J H,Wang K X, Liu V, Ma Z, Fan S. Progress in 2D photonic crystal Fano resonance photonics. Progress in Quantum Electronics, 2014, 38(1): 1–74

    [41] Mateus C F R, Huang M C Y, Deng Y, Neureuther A R, Chang- Hasnain C J. Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photonics Technology Letters, 2004, 16(2): 518–520

    [42] Mateus C F R, Huang M C Y, Chen L, Chang-Hasnain C J, Suzuki Y. Broad-band mirror (1.12–1.62 mm) using a subwavelength grating. IEEE Photonics Technology Letters, 2004, 16(7): 1676– 1678

    [43] Boutami S, Ben Bakir B, Leclercq J L, Letartre X, Rojo-Romeo P, Garrigues M, Viktorovitch P, Sagnes I, Legratiet L, Strassner M. Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter. Optics Express, 2006, 14(8): 3129–3137

    [44] Sciancalepore C, Bakir B B, Letartre X, Fedeli J M, Olivier N, Bordel D, Seassal C, Rojo-Romeo P, Regreny P, Viktorovitch P. Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration. Journal of Lightwave Technology, 2011, 29(13): 2015–2024

    [45] Viktorovitch P, Bakir B B, Boutami S, Leclercq J L, Letartre X, Rojo-Romeo P, Seassal C, Zussy M, Cioccio L D, Fedeli J M. 3D harnessing of light with 2.5D photonic crystals. Laser & Photonics Reviews, 2010, 4(3): 401–413

    [46] Magnusson R, Shokooh-Saremi M. Physical basis for wideband resonant reflectors. Optics Express, 2008, 16(5): 3456–3462

    [47] Shokooh-Saremi M, Magnusson R. Wideband leaky-mode resonance reflectors: influence of grating profile and sublayers. Optics Express, 2008, 16(22): 18249–18263

    [48] Karagodsky V, Sedgwick F G, Chang-Hasnain C J. Theoretical analysis of subwavelength high contrast grating reflectors. Optics Express, 2010, 18(16): 16973–16988

    [49] Liu A, Fu F, Wang Y, Jiang B, Zheng W. Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulatormetal structure. Optics Express, 2012, 20(14): 14991–15000

    [50] Debernardi P, Orta R, Gründl T, Amann M C. 3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 2013, 49(2): 137–145

    [51] G bski M, Kuzior O, Dems M,Wasiak M, Xie Y Y, Xu Z J,Wang Q J, Zhang D H, Czyszanowski T. Transverse mode control in highcontrast grating VCSELs. Optics Express, 2014, 22(17): 20954– 20963

    [52] Huang M C Y, Zhou Y, Chang-Hasnain C J. A surface-emitting laser incorporating a high-indexcontrast subwavelength grating. Nature Photonics, 2007, 1(2): 119–122

    [53] Huang M C Y, Zhou Y, Chang-Hasnain C J. A nanoelectromechanical tunable laser. Nature Photonics, 2008, 2(3): 180–184

    [54] Boutami S, Benbakir B, Leclercq J L, Viktorovitch P. Compact and polarization controlled 1.55 mm vertical-cavity surface emitting laser using single-layer photonic crystal mirror. Applied Physics Letters, 2007, 91(7): 071105

    [55] Hofmann W, Chase C, Müller M, Rao Y, Grasse C, B hm G, Amann M C, Chang-Hasnain C J. Long-wavelength high-contrast grating vertical-cavity surface-emitting laser. IEEE Photonics Journal, 2010, 2(3): 415–422

    [56] Ansb k T, Chung I S, Semenova E S, Yvind K. 1060-nm tunable monolithic high index contrast subwavelength grating VCSEL. IEEE Photonics Technology Letters, 2013, 25(4): 365–367

    [57] Inoue S, Kashino J, Matsutani A, Ohtsuki H, Miyashita T, Koyama F. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs. Japanese Journal of Applied Physics, 2014, 53(9): 090306

    [58] Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of planar grating diffraction. Journal of the Optical Society of America, 1981, 71(7): 811–818

    [59] Huang M C Y, Zhou Y, Chang-Hasnain C J. Single mode highcontrast subwavelength grating vertical cavity surface emitting lasers. Applied Physics Letters, 2008, 92(17): 171108

    [60] Liu A, Hofmann W, Bimberg D. Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs. Optics Express, 2014, 22(10): 11804–11811

    [61] Liu A, Hofmann W, Bimberg D. Integrated high-contrast-grating optical sensor using guided mode. IEEE Journal of Quantum Electronics, 2015, 51(1): 1–8

    [62] Liu A, Hofmann W, Bimberg D. VCSELs with surface nanostructures. In: Proceedings of Asia Communications and Photonics Conference, 2014, ATh2B. 4

    [63] Zhao D, Ma Z, Zhou W. Field penetrations in photonic crystal Fano reflectors. Optics Express, 2010, 18(13): 14152–14158

    [64] Babic D I, Corzine S W. Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE Journal of Quantum Electronics, 1992, 28(2): 514– 524

    [65] Chung I S, M rk J. Speed enhancement in VCSELs employing grating mirrors. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8633: 863308

    [66] Rao Y, Yang W, Chase C, Huang M C Y,Worland D P, Khaleghi S, Chitgarha M R, Ziyadi M, Willner A E, Chang-Hasnain C J. Long- Wavelength VCSEL using high-contrast grating. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701311

    [67] Karagodsky V, Pesala B, Chase C, Hofmann W, Koyama F, Chang- Hasnain C J. Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. Optics Express, 2010, 18(2): 694–699

    [68] Sciancalepore C, Bakir B B, Menezo S, Letartre X, Bordel D, Viktorovitch P. III–V-on-Si photonic crystal vertical-cavity surfaceemitting laser arrays for wavelength division multiplexing. IEEE Photonics Technology Letters, 2013, 25(12): 1111–1113

    [69] Liu A, Wolf P, Schulze J H, Bimberg D. Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry-Pérot filter array with GaInP sacrificial layer. IEEE Photonics Journal, 2016, 8(1): 2700509

    [70] Kumari S, Gustavsson J S, Wang R, Haglund E P, Westbergh P, Sanchez D, Haglund E, Haglund , Bengtsson J, Thomas N L, Roelkens G, Larsson A, Baets R. Integration of GaAs-based VCSEL array on SiN platform with HCG. Proceedings of the Society for Photo-Instrumentation Engineers, 2015, 9372: 93720U-1–93720U- 7

    [71] Schares L, Kash J A, Doany F E, Schow C L, Schuster C, Kuchta D M, Pepeljugoski P K, Trewhella J M, Baks C W, John R A, Shan L, Kwark Y H, Budd R A, Chiniwalla P, Libsch F R, Rosner J, Tsang C K, Patel C S, Schaub J D, Dangel R, Horst F, Offrein B J, Kucharski D, Guckenberger D, Hegde S, Nyikal H, Lin C K, Tandon A, Trott G R, Nystrom M, Bour D P, Tan M R T, Dolfi D W. Terabus: terabit/ second-class card-level optical interconnect technologies. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(5): 1032–1044

    [72] Kaur K S, Subramanian A Z, Cardile P, Verplancke R, Van Kerrebrouck J, Spiga S, Meyer R, Bauwelinck J, Baets R, Van Steenberge G. Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms. Optics Express, 2015, 23 (22): 28264–28270

    [73] Louderback D A, Pickrell G W, Lin H C, Fish M A, Hindi J J, Guilfoyle P S. VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings. Electronics Letters, 2004, 40(17): 1064–1065

    [74] Haglund E P, Kumari S, Westbergh P, Gustavsson J S, Roelkens G, Baets R, Larsson A. Silicon-integrated short-wavelength hybridcavity VCSEL. Optics Express, 2015, 23(26): 33634–33640

    [75] Ferrier L, Romeo P R, Letartre X, Drouard E, Viktorovitch P. 3D integration of photonic crystal devices: vertical coupling with a silicon waveguide. Optics Express, 2010, 18(15): 16162–16174

    [76] Ferrara J, Yang W, Zhu L, Qiao P, Chang-Hasnain C J. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. Optics Express, 2015, 23 (3): 2512–2523

    [77] Chung I S, M rk J. Silicon-photonics light source realized by III–V/ Si-grating-mirror laser. Applied Physics Letters, 2010, 97(15): 151113

    [78] Park G C, Xue W, Taghizadeh A, Semenova E, Yvind K, M rk J, Chung I S. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide. Laser & Photonics Reviews, 2015, 9(3): L11– L15

    Anjin LIU, Dieter BIMBERG. Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects[J]. Frontiers of Optoelectronics, 2016, 9(2): 249
    Download Citation