• Acta Physica Sinica
  • Vol. 68, Issue 19, 196401-1 (2019)
Shan-Sen Xu, Jian Chang, Yu-Hao Wu, Sha Sha, and Bing-Bo Wei*
DOI: 10.7498/aps.68.20190910 Cite this Article
Shan-Sen Xu, Jian Chang, Yu-Hao Wu, Sha Sha, Bing-Bo Wei. Rapid solidification mechanism of liquid quinary Ni-Zr-Ti-Al-Cu alloy investigated by high-speed cinematography[J]. Acta Physica Sinica, 2019, 68(19): 196401-1 Copy Citation Text show less
Phase constitution and transition characteristics of quinary Ni40Zr28.5Ti16.5Al10Cu5 alloy: (a) XRD pattern; (b) DSC thermogram; (c) cooling curve at levitated state.五元Ni40Zr28.5Ti16.5Al10Cu5合金的相组成和相变特征 (a) X射线衍射图谱; (b) DSC热分析曲线; (c) 电磁悬浮状态下的冷却曲线
Fig. 1. Phase constitution and transition characteristics of quinary Ni40Zr28.5Ti16.5Al10Cu5 alloy: (a) XRD pattern; (b) DSC thermogram; (c) cooling curve at levitated state. 五元Ni40Zr28.5Ti16.5Al10Cu5合金的相组成和相变特征 (a) X射线衍射图谱; (b) DSC热分析曲线; (c) 电磁悬浮状态下的冷却曲线
Recalescence process caused by rapid growth of primary Ni3Ti phase(a) Single-point nucleation; (b) multi-point nucleation; (c) annular region nucleation.初生 Ni3Ti相快速生长引起的再辉过程(a) 单点形核; (b) 多点形核; (c) 环区形核
Fig. 2. Recalescence process caused by rapid growth of primary Ni3Ti phase(a) Single-point nucleation; (b) multi-point nucleation; (c) annular region nucleation.  初生 Ni3Ti相快速生长引起的再辉过程(a) 单点形核; (b) 多点形核; (c) 环区形核
Rotation rateversus undercooling of levitated alloy droplet悬浮状态下合金液滴的旋转速率与过冷度关系
Fig. 3. Rotation rateversus undercooling of levitated alloy droplet悬浮状态下合金液滴的旋转速率与过冷度关系
Dendritic growth and microstructure of primary Ni3Ti phase: (a) Dendritic growth velocity; (b) maximum length and volume fraction.初生Ni3Ti相枝晶生长与组织特征 (a) 枝晶生长速度; (b) 最大尺寸和体积分数
Fig. 4. Dendritic growth and microstructure of primary Ni3Ti phase: (a) Dendritic growth velocity; (b) maximum length and volume fraction. 初生Ni3Ti相枝晶生长与组织特征  (a) 枝晶生长速度; (b) 最大尺寸和体积分数
Solidification microstructures of electromagnetically levitated Ni40Zr28.5Ti16.5Al10Cu5 alloy. (a) Master alloy; (b) ΔT=115 K; (c) ΔT=200 K; (d) ΔT=290 K.电磁悬浮条件下Ni40Zr28.5Ti16.5Al10Cu5合金的微观组织形态 (a)母合金; (b) ΔT=115 K; (c) ΔT=200 K; (d) ΔT=290 K
Fig. 5. Solidification microstructures of electromagnetically levitated Ni40Zr28.5Ti16.5Al10Cu5 alloy. (a) Master alloy; (b) ΔT=115 K; (c) ΔT=200 K; (d) ΔT=290 K. 电磁悬浮条件下Ni40Zr28.5Ti16.5Al10Cu5合金的微观组织形态 (a)母合金; (b) ΔT=115 K; (c) ΔT=200 K; (d) ΔT=290 K
Liquid undercooling and eutectic growth of alloy droplets: (a) Estimated undercoolings of freely falling alloy droplets; (b) average eutectic spacing versus undercooling.合金液滴深过冷与共晶生长特征 (a)过冷度随液滴直径变化; (b) 共晶间距随过冷度变化
Fig. 6. Liquid undercooling and eutectic growth of alloy droplets: (a) Estimated undercoolings of freely falling alloy droplets; (b) average eutectic spacing versus undercooling.合金液滴深过冷与共晶生长特征 (a)过冷度随液滴直径变化; (b) 共晶间距随过冷度变化
Internal temperature field of alloy droplet versus diameter and location (a) Temperature distribution; (b) temperature gradient; (c) cooling rate.合金液滴内部温度场随直径和位置的变化关系 (a) 温度分布; (b) 温度梯度; (c) 冷却速率
Fig. 7. Internal temperature field of alloy droplet versus diameter and location (a) Temperature distribution; (b) temperature gradient; (c) cooling rate.合金液滴内部温度场随直径和位置的变化关系 (a) 温度分布; (b) 温度梯度; (c) 冷却速率
Microstructural morphology of solidified alloy droplets with different diameters.(a) 957 μm diameter; (b) Enlarged A in (a); (c) Enlarged B in (a)(d) 428 μm diameter; (b) Enlarged C in (d); (c) Enlarged D in (d) 自由落体条件下不同直径合金液滴的凝固组织形貌 (a) 957 μm直径; (b) A区放大; (c) B区放大(d) 428 μm直径; (e) C区放大; (f) D区放大
Fig. 8. Microstructural morphology of solidified alloy droplets with different diameters.(a) 957 μm diameter; (b) Enlarged A in (a); (c) Enlarged B in (a)(d) 428 μm diameter; (b) Enlarged C in (d); (c) Enlarged D in (d) 自由落体条件下不同直径合金液滴的凝固组织形貌 (a) 957 μm直径; (b) A区放大; (c) B区放大(d) 428 μm直径; (e) C区放大; (f) D区放大
Amorphous phase distribution versus alloy droplet diameter合金液滴凝固组织中非晶相分布规律
Fig. 9. Amorphous phase distribution versus alloy droplet diameter合金液滴凝固组织中非晶相分布规律
Variation of solidification microstructures with alloy droplets diameter: (a) Typical structure parameters; (b) average eutectic spacing.合金凝固组织特征随液滴直径变化规律 (a) 非晶相体积分数; (b) 共晶相平均间距
Fig. 10. Variation of solidification microstructures with alloy droplets diameter: (a) Typical structure parameters; (b) average eutectic spacing.合金凝固组织特征随液滴直径变化规律 (a) 非晶相体积分数; (b) 共晶相平均间距
物理参数数值
初始温度, T0/K 1500
环境温度, Ti/K 298
热导率, κ/W·m–1·K–165.4
液相线温度, TL/K 1400
Stefan-Boltzmann常数, σSB/W·m–1·K–15.67 × 10–8
熔体密度, ρ/kg·m–36.15 × 103
位置参数, r/r00.1—1.0
熔体热辐射系数, εh0.2
熔体比热, Cp, /J·kg–1·K–1601
Table 1.

Physical parameters used in calculations

理论计算用热物性参数[23]

Shan-Sen Xu, Jian Chang, Yu-Hao Wu, Sha Sha, Bing-Bo Wei. Rapid solidification mechanism of liquid quinary Ni-Zr-Ti-Al-Cu alloy investigated by high-speed cinematography[J]. Acta Physica Sinica, 2019, 68(19): 196401-1
Download Citation