• Photonics Research
  • Vol. 9, Issue 6, 1062 (2021)
Tianyue Li1, Xiaohao Xu2、4、*, Boyan Fu1, Shuming Wang1、3、5、*, Baojun Li2, Zhenlin Wang1, and Shining Zhu1、3
Author Affiliations
  • 1National Laboratory of Solid-State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • 2Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
  • 3Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing 210093, China
  • 4e-mail: xuxhao@jnu.edu.cn
  • 5e-mail: wangshuming@nju.edu.cn
  • show less
    DOI: 10.1364/PRJ.421121 Cite this Article Set citation alerts
    Tianyue Li, Xiaohao Xu, Boyan Fu, Shuming Wang, Baojun Li, Zhenlin Wang, Shining Zhu. Integrating the optical tweezers and spanner onto an individual single-layer metasurface[J]. Photonics Research, 2021, 9(6): 1062 Copy Citation Text show less
    References

    [1] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [2] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [3] P. C. Chaumet, M. Nieto-Vesperinas. Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett., 25, 1065-1067(2000).

    [4] M. Nieto-Vesperinas, J. J. Saenz, R. Gomez-Medina, L. Chantada. Optical forces on small magnetodielectric particles. Opt. Express, 18, 11428-11443(2010).

    [5] A. Ashkin. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24, 156-159(1970).

    [6] J. L. Killian, F. Ye, M. D. Wang. Optical tweezers: a force to be reckoned with. Cell, 175, 1445-1448(2018).

    [7] F. Tebbenjohanns, M. Frimmer, V. Jain, D. Windey, L. Novotny. Motional sideband asymmetry of a nanoparticle optically levitated in free space. Phys. Rev. Lett., 124, 013603(2020).

    [8] F. Tebbenjohanns, M. Frimmer, A. Militaru, V. Jain, L. Novotny. Cold damping of an optically levitated nanoparticle to microkelvin temperatures. Phys. Rev. Lett., 122, 223601(2019).

    [9] Y. Roichman, B. Sun, A. Stolarski, D. G. Grier. Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: the fountain of probability. Phys. Rev. Lett., 101, 128301(2008).

    [10] X. Xu, M. Nieto‐Vesperinas, C. W. Qiu, X. Liu, D. Gao, Y. Zhang, B. Li. Kerker‐type intensity‐gradient force of light. Laser Photon. Rev, 14, 1900265(2020).

    [11] H. Li, Y. Cao, L.-M. Zhou, X. Xu, T. Zhu, Y. Shi, C.-W. Qiu, W. Ding. Optical pulling forces and their applications. Adv. Opt. Photon., 12, 288-366(2020).

    [12] Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, M. Lei. Simultaneous optical trapping and imaging in the axial plane: a review of current progress. Rep. Prog. Phys., 83, 032401(2020).

    [13] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 3, 161-204(2011).

    [14] M. J. Padgett. Orbital angular momentum 25 years on [invited]. Opt. Express, 25, 11265-11274(2017).

    [15] M. Nieto-Vesperinas. Optical torque: electromagnetic spin and orbital-angular-momentum conservation laws and their significance. Phys. Rev. A, 92, 043843(2015).

    [16] S. Yan, M. Li, B. Yao. Separation of optical angular momentum flux. J. Opt., 21, 035606(2019).

    [17] N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett. Mechanical equivalence of spin and orbital angular momentum of light an optical spanner. Opt. Lett., 22, 52-54(1997).

    [18] L. Chen, G. Zheng, W. She. Electrically and magnetically controlled optical spanner based on the transfer of spin angular momentum of light in an optically active medium. Phys. Rev. A, 75, 061403(2007).

    [19] Y. Zhang, W. Shi, Z. Shen, Z. Man, C. Min, J. Shen, S. Zhu, H. P. Urbach, X. Yuan. A plasmonic spanner for metal particle manipulation. Sci. Rep., 5, 15446(2015).

    [20] S. Mei, K. Huang, T. Zhang, M. Q. Mehmood, H. Liu, C. T. Lim, J. Teng, C.-W. Qiu. Evanescent vortex: optical subwavelength spanner. Appl. Phys. Lett., 109, 191107(2016).

    [21] M. Nieto-Vesperinas. Optical torque on small bi-isotropic particles. Opt. Lett., 40, 3021-3024(2015).

    [22] M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, K. Dholakia. Optical vortex trap for resonant confinement of metal nanoparticles. Opt. Express, 16, 4991-4999(2008).

    [23] J. R. Arias-Gonzalez, M. Nieto-Vesperinas. Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. J. Opt. Soc. Am. A, 20, 1201-1209(2003).

    [24] A. Arbabi, Y. Horie, M. Bagheri, A. Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [25] Y. Bao, J. Ni, C. W. Qiu. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv. Mater., 32, 1905659(2020).

    [26] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [27] L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750-5755(2012).

    [28] S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, D. P. Tsai. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [29] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [30] S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, D. P. Tsai. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [31] R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, D. P. Tsai. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227-231(2019).

    [32] L. Li, Z. Liu, X. Ren, S. Wang, V.-C. Su, M.-K. Chen, C. Chu, K. H. Yu, B. Liu, W. Zang, G. Guo, L. Zhang, Z. Wang, S. Zhu, D. P. Tsai. Metalens-array–based high-dimensional and multiphoton quantum source. Science, 368, 1487-1490(2020).

    [33] T. Li, X. Li, S. Yan, X. Xu, S. Wang, B. Yao, Z. Wang, S. Zhu. Generation and conversion dynamics of dual Bessel beams with a photonic spin-dependent dielectric metasurface. Phys. Rev. Appl., 15, 014059(2021).

    [34] E. Nazemosadat, M. Mazur, S. Kruk, I. Kravchenko, J. Carpenter, J. Schröder, P. A. Andrekson, M. Karlsson, Y. Kivshar. Dielectric broadband metasurfaces for fiber mode‐multiplexed communications. Adv. Opt. Mater., 7, 1801679(2019).

    [35] S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, W. Zhang. Multidimensional manipulation of photonic spin Hall effect with a single‐layer dielectric metasurface. Adv. Opt. Mater., 7, 1801365(2018).

    [36] S. Li, X. Li, L. Zhang, G. Wang, L. Zhang, M. Liu, C. Zeng, L. Wang, Q. Sun, W. Zhao, W. Zhang. Efficient optical angular momentum manipulation for compact multiplexing and demultiplexing using a dielectric metasurface. Adv. Opt. Mater., 8, 1901666(2020).

    [37] J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, F. Capasso. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [38] W. Cai, H. Yu, S. Xu, M. Xia, T. Li, Y. Yin, Y. Xia, J. Yin. Optical focusing based on the planar metasurface reflector with application to trapping cold molecules. J. Opt. Soc. Am. B, 35, 3049-3054(2018).

    [39] T. Chantakit, C. Schlickriede, B. Sain, F. Meyer, T. Weiss, N. Chattham, T. Zentgraf. All-dielectric silicon metalens for two-dimensional particle manipulation in optical tweezers. Photon. Res., 8, 1435-1440(2020).

    [40] L. Ma, J. Guan, Y. Wang, C. Chen, J. Zhang, J. Lin, J. Tan, P. Jin. Diffraction-limited axial double foci and optical traps generated by optimization-free planar lens. Nanophotonics, 9, 841-853(2020).

    [41] A. Eremin, P. Hirankittiwong, N. Chattham, H. Nadasi, R. Stannarius, J. Limtrakul, O. Haba, K. Yonetake, H. Takezoe. Optically driven translational and rotational motions of microrod particles in a nematic liquid crystal. Proc. Natl. Acad. Sci. USA, 112, 1716-1720(2015).

    [42] H. Sroor, Y.-W. Huang, B. Sephton, D. Naidoo, A. Vallés, V. Ginis, C.-W. Qiu, A. Ambrosio, F. Capasso, A. Forbes. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics, 14, 498-503(2020).

    [43] S. Suwannasopon, F. Meyer, C. Schlickriede, P. Chaisakul, J. Thienprasert, J. Limtrakul, T. Zentgraf, N. Chattham. Miniaturized metalens based optical tweezers on liquid crystal droplets for lab-on-a-chip optical motors. Crystals, 9, 515(2019).

    [44] S. Yan, M. Li, Y. Liang, Y. Cai, B. Yao. Spin momentum-dependent orbital motion. New J. Phys., 22, 053009(2020).

    [45] X. Xu, C. Cheng, H. Xin, H. Lei, B. Li. Controllable orientation of single silver nanowire using two fiber probes. Sci. Rep., 4, 3989(2014).

    [46] J. D. Jackson. Classical Electrodynamics(1998).

    [47] A. Rohrbach. Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. Phys. Rev. Lett., 95, 168102(2005).

    [48] M. V. Berry. Optical currents. J. Opt. A, 11, 094001(2009).

    [49] A. Y. Bekshaev, M. S. Soskin. Transverse energy flows in vectorial fields of paraxial beams with singularities. Opt. Commun., 271, 332-348(2007).

    [50] A. Bekshaev, K. Y. Bliokh, M. Soskin. Internal flows and energy circulation in light beams. J. Opt., 13, 053001(2011).

    [51] X. Xu, C. Cheng, Y. Zhang, H. Lei, B. Li. Scattering and extinction torques: how plasmon resonances affect the orientation behavior of a nanorod in linearly polarized light. J. Phys. Chem. Lett., 7, 314-319(2016).

    [52] H. Li, Y. Cao, B. Shi, T. Zhu, Y. Geng, R. Feng, L. Wang, F. Sun, Y. Shi, M. A. Miri, M. Nieto-Vesperinas, C. W. Qiu, W. Ding. Momentum-topology-induced optical pulling force. Phys. Rev. Lett., 124, 143901(2020).

    [53] T. Zhu, Y. Shi, W. Ding, D. P. Tsai, T. Cao, A. Q. Liu, M. Nieto-Vesperinas, J. J. Saenz, P. C. Wu, C. W. Qiu. Extraordinary multipole modes and ultra-enhanced optical lateral force by chirality. Phys. Rev. Lett., 125, 043901(2020).

    [54] H. Chen, H. Zheng, W. Lu, S. Liu, J. Ng, Z. Lin. Lateral optical force due to the breaking of electric-magnetic symmetry. Phys. Rev. Lett., 125, 073901(2020).

    [55] X. Xu, M. Nieto-Vesperinas. Azimuthal imaginary Poynting momentum density. Phys. Rev. Lett., 123, 233902(2019).

    CLP Journals

    [1] Jia-Lu Zhu, Ren-Chao Jin, Li-Li Tang, Zheng-Gao Dong, Jia-Qi Li, Jin Wang. Multidimensional trapping by dual-focusing cylindrical vector beams with all-silicon metalens[J]. Photonics Research, 2022, 10(5): 1162

    [2] Ata Ur Rahman Khalid, Fu Feng, Naeem Ullah, Xiaocong Yuan, Michael Geoffrey Somekh. Exploitation of geometric and propagation phases for spin-dependent rational-multiple complete phase modulation using dielectric metasurfaces[J]. Photonics Research, 2022, 10(4): 877

    Tianyue Li, Xiaohao Xu, Boyan Fu, Shuming Wang, Baojun Li, Zhenlin Wang, Shining Zhu. Integrating the optical tweezers and spanner onto an individual single-layer metasurface[J]. Photonics Research, 2021, 9(6): 1062
    Download Citation