• Advanced Photonics
  • Vol. 1, Issue 6, 065001 (2019)
Zhipeng Qin1、2、3, Guoqiang Xie1、2、3、*, Hongan Gu1、2、3, Ting Hai1、2、3, Peng Yuan1、2、3, Jingui Ma1、2、3, and Liejia Qian1、2、3、*
Author Affiliations
  • 1Shanghai Jiao Tong University, School of Physics and Astronomy, Shanghai, China
  • 2Shanghai Jiao Tong University, Collaborative Innovation Center of Inertial Fusion Sciences and Applications, Shanghai, China
  • 3Shanghai Jiao Tong University, Key Laboratory for Laser Plasmas, Ministry of Education, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.1.6.065001 Cite this Article Set citation alerts
    Zhipeng Qin, Guoqiang Xie, Hongan Gu, Ting Hai, Peng Yuan, Jingui Ma, Liejia Qian. Mode-locked 2.8-μm fluoride fiber laser: from soliton to breathing pulse[J]. Advanced Photonics, 2019, 1(6): 065001 Copy Citation Text show less
    References

    [1] S. D. Jackson. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics, 6, 423-431(2012).

    [2] X. Zhu et al. Pulsed fluoride fiber lasers at 3  μm. J. Opt. Soc. Am. B, 34, A15-A28(2017). https://doi.org/10.1364/JOSAB.34.000A15

    [3] G. Ycas et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2  μm. Nat. Photonics, 12, 202-208(2018). https://doi.org/10.1038/s41566-018-0114-7

    [4] J. Ma et al. Review of mid-infrared mode-locked laser sources in the 2.0  μm-3.5  μm spectral region. Appl. Phys. Rev., 6, 021317(2019). https://doi.org/10.1063/1.5037274

    [5] C. Zhu et al. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions. Nat. Commun., 8, 14111(2017).

    [6] S. Antipov et al. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica, 3, 1373-1376(2016).

    [7] S. Duval et al. Femtosecond fiber lasers reach the mid-infrared. Optica, 2, 623-626(2015).

    [8] T. Hu, S. D. Jackson, D. D. Hudson. Ultrafast pulses from a mid-infrared fiber laser. Opt. Lett., 40, 4226-4228(2015).

    [9] Y. Wang et al. Ultrafast Dy3+: fluoride fiber laser beyond 3  μm. Opt. Lett., 44, 395-398(2019). https://doi.org/10.1364/OL.44.000395

    [10] C. R. Petersen et al. Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics, 8, 830-834(2014). https://doi.org/10.1038/nphoton.2014.213

    [11] Y. Tang et al. Generation of intense 100 fs solitons tunable from 2 to 4.3  μm in fluoride fiber. Optica, 3, 948-951(2016). https://doi.org/10.1364/OPTICA.3.000948

    [12] A. H. Nejadmalayeri et al. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses. Opt. Lett., 30, 964-966(2005).

    [13] K. Tamura et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett., 18, 1080-1082(1993).

    [14] Y. Cui, X. Liu. Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons. Opt. Express, 21, 18969-18974(2013).

    [15] W. H. Renninger, A. Chong, F. W. Wise. Dissipative solitons in normal-dispersion fiber lasers. Phys. Rev. A, 77, 023814(2008).

    [16] B. Oktem, C. Ülgüdür, F. Ömer Ilday. Soliton-similariton fibre laser. Nat. Photonics, 4, 307-311(2010).

    [17] W. Liu et al. Femtosecond Mamyshev oscillator with 10-MW-level peak power. Optica, 6, 194-197(2019).

    [18] F. Gan. Optical properties of fluoride glasses: a review. J. Non-Cryst. Solids, 184, 9-20(1995).

    [19] N. P. Barnes, M. S. Piltch. Temperature-dependent Sellmeier coefficients and nonlinear optics average power limit for germanium. J. Opt. Soc. Am., 69, 178-180(1979).

    [20] X. Meng et al. Watt-level widely tunable femtosecond mid-infrared KTiOAsO4 optical parametric oscillator pumped by a 1.03  μm Yb:KGW laser. Opt. Lett., 43, 943-946(2018). https://doi.org/10.1364/OL.43.000943

    [21] J. Fan et al. High power 4.2-cycle mid-infrared pulses from a self-compression optical parametric oscillator. IEEE Photonics J., 10, 1504807(2018).

    [22] C. Agger et al. Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation. J. Opt. Soc. Am. B, 29, 635-645(2012).

    CLP Journals

    [1] Mengyu Zhang, Hao Chen, Jinde Yin, Jintao Wang, Jinzhang Wang, Peiguang Yan. Recent development of saturable absorbers for ultrafast lasers [Invited][J]. Chinese Optics Letters, 2021, 19(8): 081405

    [2] Jiafeng Lu, Fan Shi, Linghao Meng, Longkun Zhang, Linping Teng, Zhengqian Luo, Peiguang Yan, Fufei Pang, Xianglong Zeng. Real-time observation of vortex mode switching in a narrow-linewidth mode-locked fiber laser[J]. Photonics Research, 2020, 8(7): 1203

    [3] Xiao-Cong (Larry) Yuan, Anatoly Zayats. Laser: sixty years of advancement[J]. Advanced Photonics, 2020, 2(5): 050101

    Zhipeng Qin, Guoqiang Xie, Hongan Gu, Ting Hai, Peng Yuan, Jingui Ma, Liejia Qian. Mode-locked 2.8-μm fluoride fiber laser: from soliton to breathing pulse[J]. Advanced Photonics, 2019, 1(6): 065001
    Download Citation