• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 1, 010501 (2023)
Haoran LIU1,2, Qianqian ZHOU2, Juncheng LIANG2, and Daqing YUAN1,*
Author Affiliations
  • 1China Institute of Atomic Energy, Beijing 102413, China
  • 2National Institute of Metrology, Beijing 100029, China
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.010501 Cite this Article
    Haoran LIU, Qianqian ZHOU, Juncheng LIANG, Daqing YUAN. Activity measurement of 55Fe using the liquid scintillation TDCR method[J]. NUCLEAR TECHNIQUES, 2023, 46(1): 010501 Copy Citation Text show less
    References

    [1] Hou X L. Liquid scintillation counting for determination of radionuclides in environmental and nuclear application[J]. Journal of Radioanalytical and Nuclear Chemistry, 318, 1597-1628(2018).

    [3] Hou X L. Radiochemical analysis of radionuclides difficult to measure for waste characterization in decommissioning of nuclear facilities[J]. Journal of Radioanalytical and Nuclear Chemistry, 273, 43-48(2007).

    [4] Leskinen A, Salminen-Paatero S. Development of 3H, 14C, 41Ca, 55Fe, 63Ni radiochemical analysis methods in activated concrete samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 331, 31-41(2022).

    [5] König W, Schupfner R, Schüttelkopf H. A fast and very sensitive LSC procedure to determine Fe-55 in steel and concrete[J]. Journal of Radioanalytical and Nuclear Chemistry, 193, 119-125(1995).

    [6] Nichols A L. X- and gamma-ray standards for detector efficiency calibration[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 286, 467-473(1990).

    [8] Remenec B, Dulanska S, Mátel L. Determination of difficult to measure radionuclides in primary circuit facilities of NPP V1 Jaslovske Bohunice[J]. Journal of Radioanalytical and Nuclear Chemistry, 298, 1879-1884(2013).

    [9] Leskinen A, Salminen-Paatero S, Gautier C et al. Intercomparison exercise on difficult to measure radionuclides in activated steel: statistical analysis of radioanalytical results and activation calculations[J]. Journal of Radioanalytical and Nuclear Chemistry, 324, 1303-1316(2020).

    [10] Ziemek T, Broda R, Listkowska A et al. Standardization of an 55Fe solution using the TDCR method in POLATOM as part of the CCRI (II)-K2.Fe-55.2019 key comparison[J]. Journal of Radioanalytical and Nuclear Chemistry, 331, 3241-3248(2022).

    [11] Razdolescu A C, Cassette P, Sahagia M. Measurement of 55Fe solution activity by LSC-TDCR method[J]. Applied Radiation and Isotopes, 66, 750-755(2008).

    [12] Cassette P, Bouchard J. The design of a liquid scintillation counter based on the triple to double coincidence ratio method[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 505, 72-75(2003).

    [13] Broda R, Cassette P, Kossert K. Radionuclide metrology using liquid scintillation counting[J]. Metrologia, 44, S36-S52(2007).

    [14] Kossert K, Sabot B, Cassette P et al. On the photomultiplier-tube asymmetry in TDCR systems[J]. Applied Radiation and Isotopes, 163, 109223(2020).

    [15] Zhou Q Q, Liu H, Yang Z et al. Development of a portable TDCR system at NIM, China[J]. Applied Radiation and Isotopes, 187, 110315(2022).

    [16] Bouchard J, Cassette P. MAC3: an electronic module for the processing of pulses delivered by a three photomultiplier liquid scintillation counting system[J]. Applied Radiation and Isotopes, 52, 669-672(2000).

    [17] Carles P G, Malonda A. Free parameter, figure of merit and ionization quench in liquid scintillation counting[J]. Applied Radiation and Isotopes, 54, 447-454(2001).

    [18] Huo J D. Nuclear data sheets for A = 55[J]. Nuclear Data Sheets, 109, 787-942(2008).

    [19] Grau Carles A. MICELLE, the micelle size effect on the LS counting efficiency[J]. Computer Physics Communications, 176, 305-317(2007).

    [20] Kossert K, Grau Carles A. Improved method for the calculation of the counting efficiency of electron-capture nuclides in liquid scintillation samples[J]. Applied Radiation and Isotopes, 68, 1482-1488(2010).

    [21] Mougeot X. Towards high-precision calculation of electron capture decays[J]. Applied Radiation and Isotopes, 154, 108884(2019).

    [22] Larkins F P. Semiempirical Auger-electron energies for elements 10≤Z≤100[J]. Atomic Data and Nuclear Data Tables, 20, 311-387(1977).

    [23] Bambynek W, Crasemann B, Fink R W et al. X-ray fluorescence yields, auger, and coster-Kronig transition probabilities[J]. Reviews of Modern Physics, 44, 716-813(1972).

    [24] Chen M H, Craseman B, Mark H. Relativistic radiationless transition probabilities for atomic K- and L-shells[J]. Atomic Data and Nuclear Data Tables, 24, 13-37(1979).

    [25] McGuire E J. Atomic M-shell coster-Kronig, auger, and radiative rates, and fluorescence yields for Ca-Th[J]. Physical Review A, 5, 1043-1047(1972).

    [26] Bearden J A, Burr A F. Reevaluation of X-ray atomic energy levels[J]. Reviews of Modern Physics, 39, 125-142(1967).

    [27] Birks J B. Scintillations from organic crystals: specific fluorescence and relative response to different radiations[J]. Proceedings of the Physical Society Section A, 64, 874-877(1951).

    [28] Broda R, Bonková I, Capogni M et al. The CCRI(II)-K2.Fe-55.2019 key comparison of activity concentration measurements of a 55Fe solution[J]. Metrologia, 58, 06010(2021).

    Haoran LIU, Qianqian ZHOU, Juncheng LIANG, Daqing YUAN. Activity measurement of 55Fe using the liquid scintillation TDCR method[J]. NUCLEAR TECHNIQUES, 2023, 46(1): 010501
    Download Citation