• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 9, 090603 (2024)
Hengfeng GONG*, Jun YAN, Sigong LI, Yang LIU..., Mengteng CHEN, Qisen REN, Jiaxiang XUE and Yehong LIAO|Show fewer author(s)
Author Affiliations
  • Nuclear Fuel and Materials Department, China Nuclear Power Technology Research Institute Co., Ltd, Shenzhen 518033, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.090603 Cite this Article
    Hengfeng GONG, Jun YAN, Sigong LI, Yang LIU, Mengteng CHEN, Qisen REN, Jiaxiang XUE, Yehong LIAO. The diffusion behavior of oxygen and hydrogen in Chromium coating on fuel cladding[J]. NUCLEAR TECHNIQUES, 2024, 47(9): 090603 Copy Citation Text show less
    References

    [1] Coleman C E, Hardie D. The hydrogen embrittlement of α-zirconium—a review[J]. Journal of the Less Common Metals, 11, 168-185(1966).

    [2] Motta A T, Capolungo L, Chen L Q et al. Hydrogen in zirconium alloys: a review[J]. Journal of Nuclear Materials, 518, 440-460(2019).

    [3] Terrani K A. Accident tolerant fuel cladding development: Promise, status, and challenges[J]. Journal of Nuclear Materials, 501, 13-30(2018).

    [4] Yang-Hyun K, Jae-Ho Y, Jeong-Yong P et al. KAERI's development of LWR accident-tolerant fuel[J]. Nuclear Technology, 186, 295-304(2014).

    [5] Gulbransen E A, Andrew K F. Kinetics of the oxidation of chromium[J]. Journal of the Electrochemical Society, 104, 334(1957).

    [6] Tveten B, Hultquist G, Norby T. Hydrogen in chromium: influence on the high-temperature oxidation kinetics in O2, oxide-growth mechanisms, and scale adherence[J]. Oxidation of Metals, 52, 221-233(1999).

    [7] Krejčí J, Kabátová J, Manoch F et al. Development and testing of multicomponent fuel cladding with enhanced accidental performance[J]. Nuclear Engineering and Technology, 52, 597-609(2020).

    [8] Tang C, Grosse M, Steinhbruek M et al. Oxidation and quench behavior of cold spraying Cr-coated Zircaloy fuel cladding under severe accident scenarios[C].

    [9] WU Jinlong, LUAN Baifeng, ZHOU Hongling et al. Research progress regarding interfacial element diffusion behavior of chromium coating on zirconium alloy cladding[J]. Surface Technology, 53, 16-27(2024).

    [10] ZHANG Junsong, WU Jun, LIAO Jingjing et al. Oxygen diffusion in oxide film and matrix of zirconium alloys[J]. Atomic Energy Science and Technology, 58, 175-180(2024).

    [11] YAN Jun, GAO Siyu, YANG Zhongyu et al. Influence of coating thickness on high-temperature steam oxidation kinetics and mechanisms of Cr-coated Zr alloy cladding[J]. Surface Technology, 53, 147-157, 251(2024).

    [12] Ratnayake R, Mader E. Hydrogen pickup and permeability for coated cladding technologies[R]. Technical Report, 1-124(2020).

    [13] Cox B, Wong Y M. Hydrogen uptake micro-mechanism for Zr alloys[J]. Journal of Nuclear Materials, 270, 134-146(1999).

    [15] Kresse G, Furthmüller J. Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 6, 15-50(1996).

    [16] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 77, 3865-3868(1996).

    Hengfeng GONG, Jun YAN, Sigong LI, Yang LIU, Mengteng CHEN, Qisen REN, Jiaxiang XUE, Yehong LIAO. The diffusion behavior of oxygen and hydrogen in Chromium coating on fuel cladding[J]. NUCLEAR TECHNIQUES, 2024, 47(9): 090603
    Download Citation