• Acta Photonica Sinica
  • Vol. 51, Issue 7, 0751415 (2022)
Runzhi CHEN1、3, Yuting XING1、3, Yao ZHANG1、2, Dongliang WANG1、3, Junli WANG2, Zhiyi WEI1、3、4, and Guoqing CHANG1、3、4、*
Author Affiliations
  • 1Key Laboratory of Optical Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China
  • 2School of Physics and Optoelectronic Engineering,Xidian University,Xi'an 710071,China
  • 3University of Chinese Academy of Sciences,Beijing 100049,China
  • 4Songshan Lake Materials Laboratory,Dongguan,Guangdong 523808,China
  • show less
    DOI: 10.3788/gzxb20225107.0751415 Cite this Article
    Runzhi CHEN, Yuting XING, Yao ZHANG, Dongliang WANG, Junli WANG, Zhiyi WEI, Guoqing CHANG. Nonlinear Amplification Techniques for Ultrafast Fiber Lasers(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751415 Copy Citation Text show less
    References

    [1] G CHANG, Z WEI. Ultrafast fiber lasers: an expanding versatile toolbox. Iscience, 23, 101101(2020).

    [2] D STRICKLAND, G MOUROU. Compression of amplified chirped optical pulses. Optics Communications, 55, 447-449(1985).

    [3] M STOCK, A GALVANAUSKAS, M FERMANN et al. Generation of high-power femtosecond optical pulses by chirped pulse amplification in erbium doped fibers, 412-414(1993).

    [4] A GALVANAUSKAS, G CHO, A HARIHARAN et al. Generation of high-energy femtosecond pulses in multimode-core Yb-fiber chirped-pulse amplification systems. Optics letters, 26, 935-937(2001).

    [5] T EIDAM, J ROTHHARDT, F STUTZKI et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power. Optics Express, 19, 255-260(2011).

    [6] P WAN, L M YANG, J LIU. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers. Optics Express, 21, 29854-29859(2013).

    [7] K TAMURA, M NAKAZAWA. Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers. Optics Letters, 21, 68-70(1996).

    [8] M E FERMANN, V KRUGLOV, B THOMSEN et al. Self-similar propagation and amplification of parabolic pulses in optical fibers. Physical review letters, 84, 6010(2000).

    [9] V KRUGLOV, A PEACOCK, J DUDLEY et al. Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers. Optics Letters, 25, 1753-1755(2000).

    [10] S BOSCOLO, S K TURITSYN, V Y NOVOKSHENOV et al. Self-similar parabolic optical solitary waves. Theoretical and Mathematical Physics, 133, 1647-1656(2002).

    [11] V KRUGLOV, A PEACOCK, J D HARVEY et al. Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers. Journal of the Optical Society of America B, 19, 461-469(2002).

    [12] J LIMPERT, T SCHREIBER, T CLAUSNITZER et al. High-power femtosecond Yb-doped fiber amplifier. Optics Express, 10, 628-638(2002).

    [13] A MALINOWSKI, A PIPER, J H PRICE et al. Ultrashort-pulse Yb 3+-fiber-based laser and amplifier system producing> 25-W average power. Optics Letters, 29, 2073-2075(2004).

    [14] Y ZAOUTER, D N PAPADOPOULOS, M HANNA et al. Third-order spectral phase compensation in parabolic pulse compression. Optics Express, 15, 9372-9377(2007).

    [15] D N PAPADOPOULOS, Y ZAOUTER, M HANNA et al. Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit. Optics Letters, 32, 2520-2522(2007).

    [16] Y DENG, C Y CHIEN, B G FIDRIC et al. Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier. Optics Letters, 34, 3469-3471(2009).

    [17] J W NICHOLSON, A YABLON, P WESTBROOK et al. High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation. Optics Express, 12, 3025-3034(2004).

    [18] Y OZEKI, Y TAKUSHIMA, K AISO et al. Generation of 10 GHz similariton pulse trains from 1.2 km-long erbium-doped fibre amplifier for application to multi-wavelength pulse sources. Electronics Letters, 40, 1103-1104(2004).

    [19] Y OZEKI, Y TAKUSHIMA, K AISO et al. High repetition-rate similariton generation in normal dispersion erbium-doped fiber amplifiers and its application to multi-wavelength light sources. IEICE Transactions on Electronics, 88, 904-911(2005).

    [20] C FINOT, G MILLOT, C BILLET et al. Experimental generation of parabolic pulses via Raman amplification in optical fiber. Optics Express, 11, 1547-1552(2003).

    [21] F ILDAY, J BUCKLEY, W CLARK et al. Self-similar evolution of parabolic pulses in a laser. Physical Review Letters, 92, 213902(2004).

    [22] B OKTEM, C ÜLGÜDÜR, F Ö ILDAY. Soliton-similariton fibre laser. Nature Photonics, 4, 307-311(2010).

    [23] T HIROOKA, M NAKAZAWA. Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion. Optics Letters, 29, 498-500(2004).

    [24] C FINOT, B BARVIAU, G MILLOT et al. Parabolic pulse generation with active or passive dispersion decreasing optical fibers. Optics Express, 15, 15824-15835(2007).

    [25] G CHANG, A GALVANAUSKAS, H G WINFUL et al. Dependence of parabolic pulse amplification on stimulated Raman scattering and gain bandwidth. Optics Letters, 29, 2647-2649(2004).

    [26] D B SOH, J NILSSON, A B GRUDININ. Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. I. Stimulated Raman-scattering effects. Journal of the Optical Society of America B, 23, 1-9(2006).

    [27] D B SOH, J NILSSON, A B GRUDININ. Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. II. Finite gain-bandwidth effect. Journal of the Optical Society of America B, 23, 10-19(2006).

    [28] Y ZAOUTER, D N PAPADOPOULOS, M HANNA et al. Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers. Optics Letters, 33, 107-109(2008).

    [29] H W CHEN, J LIM, S W HUANG et al. Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression. Optics Express, 20, 28672-28682(2012).

    [30] J LIM, H W CHEN, G CHANG et al. Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced carrier envelope offset frequency stabilization. Optics Express, 21, 4531-4538(2013).

    [31] S WANG, B LIU, C GU et al. Self-similar evolution in a short fiber amplifier through nonlinear pulse preshaping. Optics Letters, 38, 296-298(2013).

    [32] J ZHAO, W LI, C WANG et al. Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation. Optics Express, 22, 32214-32219(2014).

    [33] W LIU, D N SCHIMPF, T EIDAM et al. Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulses. Optics Letters, 40, 151-154(2015).

    [34] Y LIU, W LI, D LUO et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier. Optics Express, 24, 10939-10945(2016).

    [35] L L HUANG, M L HU, X H FANG et al. Generation of 110-W sub-100-fs pulses at 100 MHz by nonlinear amplification based on multicore photonic crystal fiber. IEEE Photonics Journal, 8, 1-7(2016).

    [36] H SONG, B LIU, Y LI et al. Practical 24-fs, 1-μJ, 1-MHz Yb-fiber laser amplification system. Optics Express, 25, 7559-7566(2017).

    [37] D LUO, Y LIU, C GU et al. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification. Applied Physics Letters, 112, 061106(2018).

    [38] Y ZHANG, R CHEN, H HUANG et al. High-power pre-chirp managed amplification of circularly polarized pulses using high-dispersion chirped mirrors as a compressor. OSA Continuum, 3, 1988-1998(2020).

    [39] W LIU, D N SCHIMPF, T EIDAM et al. Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulses. Optics Letters, 40, 151-154(2015).

    [40] Y LIU, W LI, D LUO et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier. Optics Express, 24, 10939-10945(2016).

    [41] D LUO, W LI, Y LIU et al. High-power self-similar amplification seeded by a 1 GHz harmonically mode-locked Yb-fiber laser. Applied Physics Express, 9, 082702(2016).

    [42] D LUO, Y LIU, C GU et al. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification. Applied Physics Letters, 112, 061106(2018).

    [43] Y LIU, C WANG, D LUO et al. Generation of 70 fs broadband pulses in a hybrid nonlinear amplification system with mode-locked Yb:YAG ceramic oscillator. Journal of Optics, 19, 125501(2017).

    [44] J ZHAO, W LI, C WANG et al. Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation. Optics Express, 22, 32214-32219(2014).

    [45] Y ZHANG, J WANG, H TENG et al. Double-pass pre-chirp managed amplification with high gain and high average power. Optics Letters, 46, 3115-3118(2021).

    [46] P SIDORENKO, W FU, F WISE. Nonlinear ultrafast fiber amplifiers beyond the gain-narrowing limit. Optica, 6, 1328-1333(2019).

    [47] P REPGEN, D WANDT, U MORGNER et al. Sub-50 fs, µJ-level pulses from a Mamyshev oscillator–amplifier system. Optics Letters, 44, 5973-5976(2019).

    [48] P SIDORENKO, F WISE. Generation of 1 µJ and 40 fs pulses from a large mode area gain-managed nonlinear amplifier. Optics Letters, 45, 4084-4087(2020).

    [49] M L BUTTOLPH, P SIDORENKO, C B SCHAFFER et al. Femtosecond optical parametric chirped-pulse amplification in birefringent step-index fiber. Optics Letters, 47, 545-548(2022).

    [50] D TOMASZEWSKA-ROLLA, R LINDBERG, V PASISKEVICIUS et al. A comparative study of an Yb-doped fiber gain-managed nonlinear amplifier seeded by femtosecond fiber lasers. Scientific Reports, 12, 1-11(2022).

    [51] Y ZHANG, R CHEN, H HUANG et al. High-power pre-chirp managed amplification of circularly polarized pulses using high-dispersion chirped mirrors as a compressor. OSA Continuum, 3, 1988-1998(2020).

    [52] S ZHOU, F W WISE, D G OUZOUNOV. Divided-pulse amplification of ultrashort pulses. Optics Letters, 32, 871-873(2007).

    [53] L KONG, L ZHAO, S LEFRANCOIS et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier. Optics Letters, 37, 253-255(2012).

    [54] M KIENEL, A KLENKE, T EIDAM et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification. Optics Letters, 39, 1049-1052(2014).

    [55] L DANIAULT, M HANNA, D N PAPADOPOULOS et al. High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining. Optics Express, 20, 21627-21634(2012).

    [56] Q HAO, Q ZHANG, T SUN et al. Divided-pulse nonlinear amplification and simultaneous compression. Applied Physics Letters, 106, 101103(2015).

    [57] Q HAO, Y WANG, T LIU et al. Divided-pulse nonlinear amplification at 1.5 μm. IEEE Photonics Journal, 8, 1-8(2016).

    [58] C WANG, W LI, L LI et al. Femtosecond Er-doped fiber laser based on divided-pulse nonlinear amplification. Journal of Optics, 18, 025503(2016).

    [59] R CHEN, G CHANG. Pre-chirp managed divided-pulse amplification using composite birefringent plates for pulse division and recombination: en route toward GW peak power. Optics Express, 29, 6330-6343(2021).

    [60] T HEUERMANN, C GAIDA, M GEBHARDT et al. Thulium-doped nonlinear fiber amplifier delivering 50 fs pulses at 20 W of average power. Optics Letters, 43, 4441-4444(2018).

    Runzhi CHEN, Yuting XING, Yao ZHANG, Dongliang WANG, Junli WANG, Zhiyi WEI, Guoqing CHANG. Nonlinear Amplification Techniques for Ultrafast Fiber Lasers(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751415
    Download Citation