• Chinese Journal of Lasers
  • Vol. 50, Issue 11, 1101010 (2023)
Zhiqaing Gao1, Qi Chang1, Haoyu Liu1, Jun Li1、2、3, Pengfei Ma1、2、3、*, and Pu Zhou1
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan, China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, Hunan, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, Hunan, China
  • show less
    DOI: 10.3788/CJL230656 Cite this Article Set citation alerts
    Zhiqaing Gao, Qi Chang, Haoyu Liu, Jun Li, Pengfei Ma, Pu Zhou. Research Progress and Development Trend of Machine Learning in Phase Control of Fiber Laser Arrays[J]. Chinese Journal of Lasers, 2023, 50(11): 1101010 Copy Citation Text show less
    References

    [1] Murnane M M, Ye J. Coherent light brightens the quantum science frontier[J]. Physics Today, 72, 48-49(2019).

    [2] Mourou G, Brocklesby B, Tajima T et al. The future is fibre accelerators[J]. Nature Photonics, 7, 258-261(2013).

    [3] Coffey V. High-energy lasers: new advances in defense applications[J]. Optics and Photonics News, 25, 28-35(2014).

    [4] Leemans W, Esarey E. Laser-driven plasma-wave electron accelerators[J]. Physics Today, 62, 44-49(2009).

    [5] Leemans W P, Duarte R, Esarey E et al. The BErkeley lab laser accelerator (BELLA): a 10 GeV laser plasma accelerator[C], 3-11(2010).

    [9] Vorontsov M. Adaptive photonics phase-locked elements (APPLE): system architecture and wavefront control concept[J]. Proceedings of SPIE, 5895, 589501(2005).

    [10] Bochove E J, Shakir S A. Analysis of a spatial-filtering passive fiber laser beam combining system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 320-327(2009).

    [11] Yang Y F, Hu M, He B et al. Passive coherent beam combining of four Yb-doped fiber amplifier chains with injection-locked seed source[J]. Optics Letters, 38, 854-856(2013).

    [12] Huo Y M, Cheo P K, King G G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier[J]. Optics Express, 12, 6230-6239(2004).

    [13] Corcoran C J, Durville F. Experimental demonstration of a phase-locked laser array using a self-Fourier cavity[J]. Applied Physics Letters, 86, 201118(2005).

    [14] Wang B S, Mies E, Minden M et al. All-fiber 50 W coherently combined passive laser array[J]. Optics Letters, 34, 863-865(2009).

    [15] Chen Z L, Hou J, Zhou P et al. Mutual injection-locking and coherent combining of two individual fiber lasers[J]. IEEE Journal of Quantum Electronics, 44, 515-519(2008).

    [16] Steinhausser B, Brignon A, Lallier E et al. High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup[J]. Optics Express, 15, 6464-6469(2007).

    [17] Kong H J, Yoon J W, Shin J S et al. Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors[J]. Applied Physics Letters, 92, 021120(2008).

    [18] Rothenberg J E. Passive coherent phasing of fiber laser arrays[J]. Proceedings of SPIE, 6873, 687315(2008).

    [19] Goodno G D, Asman C P, Anderegg J et al. Brightness-scaling potential of actively phase-locked solid-state laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 460-472(2007).

    [20] Xiao R, Hou J, Liu M et al. Coherent combining technology of master oscillator power amplifier fiber arrays[J]. Optics Express, 16, 2015-2022(2008).

    [21] Seise E, Klenke A, Limpert J et al. Coherent addition of fiber-amplified ultrashort laser pulses[J]. Optics Express, 18, 27827-27835(2010).

    [22] Fsaifes I, Daniault L, Bellanger S et al. Coherent beam combining of 61 femtosecond fiber amplifiers[J]. Optics Express, 28, 20152-20161(2020).

    [23] Chang Q, Hou T Y, Long J H et al. Experimental phase stabilization of a 397-channel laser beam array via image processing in dynamic noise environment[J]. Journal of Lightwave Technology, 40, 6542-6547(2022).

    [24] Su R T, Zhou P, Wang X L et al. High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 206-218(2014).

    [25] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 22, 907-909(1997).

    [26] Zhou P, Liu Z J, Wang X L et al. Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm[J]. Applied Physics Letters, 94, 231106(2009).

    [27] Zhou P, Liu Z J, Wang X L et al. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 248-256(2009).

    [28] Shay T M. Theory of electronically phased coherent beam combination without a reference beam[J]. Optics Express, 14, 12188-12195(2006).

    [29] Ma Y X, Zhou P, Wang X L et al. Coherent beam combination with single frequency dithering technique[J]. Optics Letters, 35, 1308-1310(2010).

    [30] Su R T, Zhang Z X, Zhou P et al. Coherent beam combining of a fiber lasers array based on cascaded phase control[J]. IEEE Photonics Technology Letters, 28, 2585-2588(2016).

    [31] Fsaifes I, Daniault L, Bellanger S et al. Coherent beam combining of 60 femtosecond fiber amplifiers[J]. Proceedings of SPIE, 11260, 112600L(2020).

    [32] Chang H X, Chang Q, Xi J C et al. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 8, 1943-1948(2020).

    [33] Chang Q, Gao Z Q, Deng Y et al. Fiber laser coherent beam combining of more than 1000 beams under strong noise[J]. Chinese Journal of Lasers, 50, 0616001(2023).

    [34] Ma P F, Zhou P, Wang X L et al. Influence of perturbative phase noise on active coherent polarization beam combining system[J]. Optics Express, 21, 29666-29678(2013).

    [35] Zhang R, Wang Y B. Research on machine learning with algorithm and development[J]. Journal of Communication University of China Science and Technology, 23, 10-18, 24(2016).

    [36] McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 5, 115-133(1943).

    [37] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 323, 533-536(1986).

    [38] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 313, 504-507(2006).

    [39] Tünnermann H, Shirakawa A. Deep reinforcement learning for coherent beam combining applications[J]. Optics Express, 27, 24223-24230(2019).

    [40] Tünnermann H, Shirakawa A. Deep reinforcement learning for tiled aperture beam combining in a simulated environment[J]. Journal of Physics: Photonics, 3, 015004(2021).

    [41] Shpakovych M, Maulion G, Kermene V et al. Experimental phase control of a 100 laser beam array with quasi-reinforcement learning of a neural network in an error reduction loop[J]. Optics Express, 29, 12307-12318(2021).

    [42] Shpakovych M, Maulion G, Boju A et al. On-demand phase control of a 7-fiber amplifiers array with neural network and quasi-reinforcement learning[J]. Photonics, 9, 243(2022).

    [43] Zhang X, Li P X, Zhu Y C et al. Coherent beam combination based on Q-learning algorithm[J]. Optics Communications, 490, 126930(2021).

    [44] He Q, Li N, Luo W J et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence, 27, 327-336(2014).

    [45] Sun Z J, Xue L, Xu Y M et al. Overview of deep learning[J]. Application Research of Computers, 29, 2806-2810(2012).

    [46] Zhang J M, Zhan Z C, Cheng K Y et al. Review on development of deep learning[J]. Journal of Jiangsu University (Natural Science Edition), 36, 191-200(2015).

    [47] Hou T Y, An Y, Chang Q et al. Deep-learning-based phase control method for tiled aperture coherent beam combining systems[J]. High Power Laser Science and Engineering, 7, e59(2019).

    [48] Liu R Q, Peng C, Liang X Y et al. Coherent beam combination far-field measuring method based on amplitude modulation and deep learning[J]. Chinese Optics Letters, 18, 041402(2020).

    [49] Wang D, Du Q, Zhou T et al. Stabilization of the 81-channel coherent beam combination using machine learning[J]. Optics Express, 29, 5694-5709(2021).

    [50] Wang D, Du Q, Zhou T et al. Machine learning pattern recognition algorithm with applications to coherent laser combination[J]. IEEE Journal of Quantum Electronics, 58, 6100309(2022).

    [51] Jia H, Zuo J, Bao Q et al. A phase-error prediction method for coherent beam combining via convolutional neural network[J]. Optik, 246, 167827(2021).

    [52] Wang D, Leng Y X. Simultaneous wavefront sensing of multiple beams using neural networks[J]. Applied Physics B, 128, 1-9(2021).

    [53] Mills B, Grant-Jacob J A, Praeger M et al. Single step phase optimisation for coherent beam combination using deep learning[J]. Scientific Reports, 12, 5188(2022).

    [54] Du Q, Wang D, Zhou T et al. Experimental beam combining stabilization using machine learning trained while phases drift[J]. Optics Express, 30, 12639-12653(2022).

    [55] Zhou P, Su R T, Ma Y X et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 48, 0401003(2021).

    [56] Hou T Y, Chang Q, Chang H X et al. Higher-order airy patterns and their application in tailoring orbital angular momentum beams with fiber laser arrays[J]. Journal of Lightwave Technology, 39, 4758-4768(2021).

    [57] Hou T, Chang Q, Chang H X et al. Structuring orbital angular momentum beams by coherent laser array systems with tip-tilt optimization[J]. Results in Physics, 19, 103602(2020).

    [58] Hou T Y, Chang Q, Yu T et al. Switching the orbital angular momentum state of light with mode sorting assisted coherent laser array system[J]. Optics Express, 29, 13428-13440(2021).

    [59] Hou T Y, Chang Q, Long J H et al. Design considerations and performance analysis of a fiber laser array system for structuring orbital angular momentum beams: a simulation study[J]. Optics Express, 30, 15279-15309(2022).

    [60] Long J H, Hou T Y, Chang Q et al. Generation of optical vortex lattices by a coherent beam combining system[J]. Optics Letters, 46, 3665-3668(2021).

    [61] Hou T Y, Zhang Y Q, Chang Q et al. High-power vortex beam generation enabled by a phased beam array fed at the nonfocal-plane[J]. Optics Express, 27, 4046-4059(2019).

    [62] Chang Q, An Y, Hou T Y et al. Phase-locking system in fiber laser array through deep learning with diffusers[C], M4A.96(2020).

    [63] Hou T Y, An Y, Chang Q et al. Deep-learning-assisted, two-stage phase control method for high-power mode-programmable orbital angular momentum beam generation[J]. Photonics Research, 8, 715-722(2020).

    [64] Hou T Y, An Y, Chang Q et al. Deep learning of coherent laser arrays in angular domain for orbital angular momentum beams customization[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 0900110(2022).

    Zhiqaing Gao, Qi Chang, Haoyu Liu, Jun Li, Pengfei Ma, Pu Zhou. Research Progress and Development Trend of Machine Learning in Phase Control of Fiber Laser Arrays[J]. Chinese Journal of Lasers, 2023, 50(11): 1101010
    Download Citation