• Chinese Journal of Lasers
  • Vol. 52, Issue 3, 0301002 (2025)
Yue Cao, Gaoshang Li, and Jiyang Ma*
Author Affiliations
  • Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, Beijing 100081, China Abstract
  • show less
    DOI: 10.3788/CJL240746 Cite this Article Set citation alerts
    Yue Cao, Gaoshang Li, Jiyang Ma. 2D/3D Whispering‑Gallery‑Mode Solid‑State Fluorescent Protein Lasers[J]. Chinese Journal of Lasers, 2025, 52(3): 0301002 Copy Citation Text show less
    References

    [1] Chalfie M, Tu Y, Euskirchen G et al. Green fluorescent protein as a marker for gene expression[J]. Science, 263, 802-805(1994).

    [2] Shimomura O. Structure of the chromophore of Aequorea green fluorescent protein[J]. FEBS Letters, 104, 220-222(1979).

    [3] Shaner N C, Campbell R E, Steinbach P A et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein[J]. Nature Biotechnology, 22, 1567-1572(2004).

    [4] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [5] Dobbie I M, Lowndes N F, Sullivan K F. Autofluorescent proteins[M]. Fluorescent proteins, 1-22(2008).

    [6] Lukyanov K A, Chudakov D M, Lukyanov S et al. Photoactivatable fluorescent proteins[J]. Nature Reviews Molecular Cell Biology, 6, 885-890(2005).

    [7] Lippincott-Schwartz J, Patterson G H. Fluorescent proteins for photoactivation experiments[J]. Methods in Cell Biology, 85, 45-61(2008).

    [8] Tsien R Y. The green fluorescent protein[J]. Annual Review of Biochemistry, 67, 509-544(1998).

    [9] Lee S, Lim W A, Thorn K S. Improved blue, green, and red fluorescent protein tagging vectors for S. cerevisiae[J]. PLoS One, 8, e67902(2013).

    [10] Remington S J. Green fluorescent protein: a perspective[J]. Protein Science, 20, 1509-1519(2011).

    [11] Vinkenborg J L, Evers T H, Reulen S W A et al. Enhanced sensitivity of FRET-based protease sensors by redesign of the GFP dimerization interface[J]. Chembiochem, 8, 1119-1121(2007).

    [12] Gather M, Yun S. Single-cell biological lasers[J]. Nature Photonics, 5, 406-410(2011).

    [13] Gather M C, Yun S H. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers[J]. Nature Communications, 5, 5722(2014).

    [14] Chen Q S, Zhang X W, Sun Y Z et al. Highly sensitive fluorescent protein FRET detection using optofluidic lasers[J]. Lab on a Chip, 13, 2679-2681(2013).

    [15] Kogure T, Karasawa S, Araki T et al. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy[J]. Nature Biotechnology, 24, 577-581(2006).

    [16] Dogru I B, Min K, Umar M et al. Single transverse mode eGFP modified silk fibroin laser[C], JTu2A.35(2018).

    [17] Ormö M, Cubitt A B, Kallio K et al. Crystal structure of the Aequorea victoria green fluorescent protein[J]. Science, 273, 1392-1395(1996).

    [18] van Thor J J. Photoreactions and dynamics of the green fluorescent protein[J]. Chemical Society Reviews, 38, 2935-2950(2009).

    [19] Lakowicz J R[M]. Principles of fluorescence spectroscopy(2008).

    [20] Muto J, Kurosawa K. Behaviour of rhodamine B in aqueous LiCl solution[J]. Chemical Physics Letters, 45, 586-588(1977).

    [21] Gaio M, Caixeiro S, Marelli B et al. Gain-based mechanism for pH sensing based on random lasing[J]. Physical Review Applied, 7, 034005(2017).

    [22] Zhang Y X, Li D Y, Ou Y et al. The study on lasing threshold properties of rhodamine B in glycerol aqueous solution[J]. IEEE Photonics Journal, 11, 1501709(2019).

    [23] Li D Y, Zhou L, Yu Q H et al. Optical fiber optofluidic laser based on surfactant solubilization of rhodamine B gain in an aqueous solution[J]. Optics Express, 30, 23295-23304(2022).

    [24] Dietrich C P, Höfling S, Gather M C. Multi-state lasing in self-assembled ring-shaped green fluorescent protein microcavities[J]. Applied Physics Letters, 105, 233702(2014).

    [25] Dietrich C P, Steude A, Tropf L et al. An exciton-polariton laser based on biologically produced fluorescent protein[J]. Science Advances, 2, e1600666(2016).

    [26] Dusel M, Betzold S, Egorov O A et al. Room temperature organic exciton-polariton condensate in a lattice[J]. Nature Communications, 11, 2863(2020).

    [27] Jiang B, Zhu S, Ren L H et al. Simultaneous ultraviolet, visible, and near-infrared continuous-wave lasing in a rare-earth-doped microcavity[J]. Advanced Photonics, 4, 046003(2022).

    [28] Jiang B, Zhu S, Wang W Y et al. Room-temperature Continuous-Wave Upconversion White Microlaser Using a Rare-earth-Doped Microcavity[J]. ACS Photonics, 9, 2956-2962(2022).

    [29] Dai J, Hou Y G, Gao S D et al. Fabrication and test of ultra-high Q magnesium fluoride microdisk resonator[J]. Acta Optica Sinica, 42, 1923004(2022).

    [30] Wan H D, Zhang S, Chen Y F et al. Highly sensitive flow rate sensor based on high quality graded hollow-core microcavity[J]. Acta Optica Sinica, 43, 2023003(2023).

    [31] Zhang X Y, Yang M H, Deng G L et al. All-optical control of ultrahigh-Q whispering gallery microspheres with laser-induced graphene[J]. Laser & Optoelectronics Progress, 60, 2314004(2023).

    [32] Liu J H, Qu T L, Zhang X et al. Fabrication of ultra-high Q factor and millimeter-scale crystal echo wall microcavity[J]. Journal of Applied Optics, 44, 742-747(2023).

    [33] Yin Q Y, Cai L, Li S W et al. An in-fiber whispering-gallery-mode microsphere resonator and its sensing characteristics[J]. Acta Optica Sinica, 43, 0106002(2023).

    [34] Cai L, Li S W, Wang J et al. Adjustment method and strain sensing characteristics of whispering gallery mode resonance in hollow microbottle[J]. Acta Optica Sinica, 44, 0213001(2024).

    [35] Fan Y Q, Zhang C H, Gao Z H et al. Randomly induced phase transformation in silk protein-based microlaser arrays for anticounterfeiting[J]. Advanced Materials, 33, e2102586(2021).

    [36] Zhang Y, Zhang C H, Fan Y Q et al. Smart protein-based biolasers: an alternative way to protein conformation detection[J]. ACS Applied Materials & Interfaces, 13, 19187-19192(2021).

    [37] Dong Y J, Bai X T, Zheng Y. Research progress of high power continuous wave thulium-doped fiber laser[J]. Laser & Optoelectronics Progress, 60, 2300005(2023).

    [38] Zhao S Y, Li G S, Peng X B et al. Ultralow-threshold green fluorescent protein laser based on high Q microbubble resonators[J]. Optics Express, 30, 23439-23447(2022).

    [39] Ma J Y, Zhao S Y, Peng X B et al. An mCherry biolaser based on microbubble cavity with ultra-low threshold[J]. Applied Physics Letters, 123, 054103(2023).

    [40] Ooka Y, Yang Y, Ward J et al. Raman lasing in a hollow, bottle-like microresonator[J]. Applied Physics Express, 8, 092001(2015).