[1] WANG Q, LI Q, Chen L F, et al . Atmospheric Environment Satellite Remote Sensing Technology and Its Application [M]. Beijing: Science Press, 2011.
[2] Wang Z T, Ma P F, Zhang L J, et al . Systematics of atmospheric environment monitoring in China via satellite remote sensing [J]. Air Quality, Atmosphere & Health , 2021, 14(2): 157-169.
[3] Liu L Y, Chen L F, Liu Y, et al . Satellite remote sensing for global stocktaking: Methods, progress and perspectives [J]. National Remote Sensing Bulletin , 2022, 26(2): 243-267.
[4] Gitarskiy M L. The refinement to the 2006 IPCC guidelines for national greenhouse gas inventories [J]. Fundamental and Applied Climatology , 2019, 2: 5-13.
[5] Wang L W, Wei Y X. Monitoring gas concentration from carbon emissions by remote sensing [J]. Spectroscopy and Spectral Analysis , 2012, 32(6): 1639-1643.
[7] Jacob D J, Turner A J, Maasakkers J D, et al . Satellite observations of atmospheric methane and their value for quantifying methane emissions [J]. Atmospheric Chemistry and Physics , 2016, 16(22): 14371-14396.
[8] Liu Y, Wang J, Che K, et al . Satellite remote sensing of greenhouse gases: Progress and trends [J]. National Remote Sensing Bulletin , 2021, 25(1): 53-64.
[9] Zhang X Y, Wang F, Wang W H, et al . The development and application of satellite remote sensing for atmospheric compositions in China [J]. Atmospheric Research , 2020, 245(3): 105056.
[10] Cai B F, Zhu S L, Yu S M, et al . The interpretation of 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventory [J]. Environmental Engineering , 2019, 37(8): 1-11.
[11] Houweling S, Bergamaschi P, Chevallier F, et al . Global inverse modeling of CH 4 sources and sinks: An overview of methods [J]. Atmospheric Chemistry and Physics , 2017, 17(1): 235-256.
[12] Duan F H, Wang X H, Ye H H, et al . Carbon dioxide retrieval method based on statistics and optical path distribution [J]. Acta Optica Sinica , 2017, 37(5): 26-32.
[13] Schuck T J, Brenninkmeijer C A M, Slemr F, et al . Greenhouse gas analysis of air samples collected onboard the CARIBIC passenger aircraft [J]. Atmospheric Measurement Techniques , 2009, 2(2): 449-464.
[14] Pison I, Bousquet P, Chevallier F, et al . Multi-species inversion of CH 4 , CO and H 2 emissions from surface measurements [J]. Atmospheric Chemistry and Physics , 2009, 9(14): 5281-5297.
[15] He Q, Yu T, Cheng T H, et al . Atmospheric carbon dioxide satellite remote sensing retrieval accuracy inspection and spatio-temporal characteristics analysis [J]. Journal of Geo-information Science , 2012, 14(2): 250-257.
[16] Zhang X Y, Meng X Y, Zhou M Q, et al . Review of the validation of atmospheric CO 2 from satellite hyper spectral remote sensing [J]. Climate Change Research , 2018, 14(6): 602-612.
[17] Yang D X, Liu Y, Cai Z N, et al . An advanced carbon dioxide retrieval algorithm for satellite measurements and its application to GOSAT observations [J]. Science Bulletin , 2015, 60(23): 2063-2066.
[18] Cai Z N, Liu Y, Yang D X. Analysis of XCO 2 retrieval sensitivity using simulated Chinese Carbon Satellite (TanSat) measurements [J]. Science China Earth Sciences , 2014, 57(8): 1919-1928.
[19] Deng J B, Liu Y, Yang D X, et al . CH 4 retrieval from hyperspectral satellite measurements in short-wave infrared: Sensitivity study and preliminary test with GOSAT data [J]. Chinese Science Bulletin , 2014, 59(14): 1499-1507.
[20] Zhao L. Remote Retrieval of Atmospheric CO 2 and CH 4 Using GOSAT [D]. Changchun: Jilin University, 2017.
[21] Jiang Y, Ye H H, Wang X H, et al . Correction of effect of plant chlorophyll fluorescence based on optical path distribution method [J]. Acta Optica Sinica , 2019, 39(4): 50-55.
[22] Yang D X, Liu Y, Cai Z N. Simulations of aerosol optical properties to top of atmospheric reflected sunlight in the near infrared CO 2 weak absorption band [J]. Atmospheric and Oceanic Science Letters , 2013, 6(1): 60-64.
[23] Ru F, Lei L P, Hou S S, et al . Evaluation of retrieval errors of greenhouse gas concentrations from GOSAT [J]. Remote Sensing Information , 2013, 28(1): 65-70.
[24] Clarmann T , Hopfner M, Kellmann S. Retrieval of temperature, H 2 O, O 3 , HNO 3 , CH 4 , N 2 O, ClONO 2 and ClO from MIPAS reduced resolution nominal mode limb emission measurements [J]. Atmospheric Measurement Techniques , 2009, 2(1): 159-175.
[25] Fan M, Chen L F, Li S S, et al . Impacts of aerosol scattering on the short-wave infrared satellite observations of CO 2 [C]. IEEE International Geoscience and Remote Sensing Symposium. Beijing, China. IEEE : 367-369.
[26] Tselioudis G, Lacis A A, Rind D, et al . Potential effects of cloud optical thickness on climate warming [J]. Nature , 1993, 366(6456): 670-672.
[27] Jiang X H. Research on Cloud Detection and CO 2 Inversion Algorithms in Greenhouse Gas Remote Sensing [D]. Beijing: University of Chinese Academy of Sciences, 2015.
[28] Liu Y, Cai Z N, Yang D X, et al . Optimization of the instrument configuration for TanSat CO 2 spectrometer [J]. Chinese Science Bulletin , 2013, 58(27): 2787-2789.
[29] Isaksen I, Berntsen T, Dalsren S, et al . Atmospheric ozone and methane in a changing climate [J]. Atmosphere , 2014, 5(3): 518-535.
[30] Bekki S, Law K S, Pyle J A. Effect of ozone depletion on atmospheric CH 4 and CO concentrations [J]. Nature , 1994, 371(6498): 595-597.
[31] Saunois M, Jackson R B, Bousquet P, et al . The growing role of methane in anthropogenic climate change [J]. Environmental Research Letters , 2016, 11(12): 120207.
[32] Chédin A, Serrar S, Scott N A, et al . First global measurement of midtropospheric CO 2 from NOAA polar satellites: Tropical zone [J]. Journal of Geophysical Research: Atmospheres , 2003, 108(D18): 4581.
[33] Crevoisier C, Heilliette S, Chédin A, et al . Midtropospheric CO 2 concentration retrieval from AIRS observations in the tropics [J]. Geophysical Research Letters , 2004, 31(17): L17106.
[34] Crevoisier C, Chédin A, Matsueda H, et al . First year of upper tropospheric integrated content of CO 2 from IASI hyperspectral infrared observations [J]. Atmospheric Chemistry and Physics , 2009, 9(14): 4797-4810.
[35] Wang J, Feng L, Palmer P I, et al . Large Chinese land carbon sink estimated from atmospheric carbon dioxide data [J]. Nature , 2020, 586(7831): 720-723.
[36] Hong X H, Zhang P, Bi Y M, et al . Retrieval of global carbon dioxide from TanSat satellite and comprehensive validation with TCCON measurements and satellite observations [J]. IEEE Transactions on Geoscience and Remote Sensing , 2021, 60: 1-16.
[37] Li Q Q. Inversion Algorithm and Software Implementation for Atmospheric CO 2 Satellite Remote Sensing [D]. Hefei: University of Science and Technology of China, 2020.
[38] Ye H H, Wang X H, Wu S C, et al . Atmospheric CO 2 retrieval method for satellite observations of greenhouse gases monitoring instrument on GF-5 [J]. Journal of Atmospheric and Environmental Optics , 2021, 16(3): 231-238.
[40] Yang D X, Liu Y, Feng L, et al . The first global carbon dioxide flux map derived from TanSat measurements [J]. Advances in Atmospheric Sciences , 2021, 38(9): 1433-1443.
[41] Liu Y, Wang J, Yao L, et al . The TanSat mission: Preliminary global observations [J]. Science Bulletin , 2018, 63(18): 1200-1207.
[42] Wu L H, Hasekamp O, Hu H L, et al . Full-physics carbon dioxide retrievals from the Orbiting Carbon Observatory-2 (OCO-2) satellite by only using the 2.06 μ m band [J]. Atmospheric Measurement Techniques , 2019, 12(11): 6049-6058.
[43] Liao X Y, Sun J L, Lu N, et al . Discussion on atmospheric CO 2 retrieval using SCIAMACHY data [J]. Progress in Geophysics , 2012, 27(3): 837-845.
[44] Song C. Retrieval, Simulation and Regional Fluxes Estimation of Greenhouse Gases [D]. Shanghai: East China Normal University, 2015.
[45] Zou M M, Chen L F, Tao J H, et al . CO 2 retrieval and preliminary retrieval results from space-based observations in shortwave infrared band [J]. Journal of Remote Sensing , 2015, 19(1): 46-53.
[48] Zhang Y, Chen L F, Tao J H, et al . Retrieval of methane profiles from spaceborne hyperspectral infrared observations [J]. Journal of Remote Sensing , 2012, 16(2): 232-247.
[49] Bu T T, Wang X H, Ye H H, et al . Errors analysis and correction in atmospheric methane retrieval based on greenhouse gases observing satellite data [J]. Spectroscopy and Spectral Analysis , 2016, 36(1): 186-190.
[51] Thompson R L , Lassaletta L, Patra P K , et al . Acceleration of global N 2 O emissions seen from two decades of atmospheric inversion [J]. Nature Climate Change , 2019, 9(12): 993-998.
[52] Ma P F, Chen L F, Li Q, et al . Simulation of atmospheric nitrous oxide profiles retrieval from AIRS observations [J]. Spectroscopy and Spectral Analysis , 2015, 35(6): 1690-1694.
[54] Xiong X Z, Maddy E S, Barnet C, et al . Retrieval of nitrous oxide from Atmospheric Infrared Sounder: Characterization and validation [J]. Journal of Geophysical Research: Atmospheres , 2014, 119(14): 9107-9122.
[55] Steffen J, Bernath P F, Boone C D. Trends in halogen-containing molecules measured by the Atmospheric Chemistry Experiment (ACE) satellite [J]. Journal of Quantitative Spectroscopy and Radiative Transfer , 2019, 238: 106619.
[56] Zeng X Y, Wang W, Liu C, et al . Detection of atmosphere CCl 2 F 2 spatio-temporal variations by ground-based high resolution Fourier transform infrared spectroscopy [J]. Acta Physica Sinica , 2021, 70(20): 9-17.
[57] Le Quéré C, Andrew R M, Canadell J G, et al . Global carbon budget 2016 [J]. Earth System Science Data , 2016, 8: 605-649.
[58] Lamarque J F, Shindell D T, Josse B, et al . The atmospheric chemistry and climate model intercomparison project (ACCMIP): Overview and description of models, simulations and climate diagnostics [J]. Geoscientific Model Development , 2013, 6(1): 179-206.
[59] Patra, P K, Houweling, S, Krol, M, et al . TransCom model simulations of CH 4 and related species: Linking transport, surface flux and chemical loss with CH 4 variability in the troposphere and lower stratosphere [J]. Atmospheric Chemistry and Physics , 2011, 11(24): 12813-12837.
[60] Tian H Q, Yang J, Lu C Q, et al . The global N 2 O model intercomparison project [J]. Bulletin of the American Meteorological Society , 2018, 99(6): 1231-1251.
[61] Nguyen H, Liu J J, Kulawik S, et al . Multi-instrument fused bias-corrected XCO 2 and other select fields aggregated as level 4 daily files V1 (MultiInstrumentFusedXCO2) at GES DISC [DS]. Goddard Earth Sciences Data and Information Services Center (GES DISC). 2022.
[62] Alkhaled A A A A. Remote Sensing of CO 2 : Geostatistical Tools for Assessing Spatial Variability, Quantifying Representation Errors, and Gap-Filling [D]. Michigan: University of Michigan, 2009.
[63] Zeng Z C, Lei L P, Hou S S, et al . A regional gap-filling method based on spatiotemporal variogram model of CO 2 columns [J]. IEEE Transactions on Geoscience and Remote Sensing , 2014, 52(6): 3594-3603.
[64] He W, van der Velde I R , Andrews A E , et al . CTDAS-Lagrange v1.0: A high-resolution data assimilation system for regional carbon dioxide observations [J]. Geoscientific Model Development , 2018, 11(8): 3515-3536.
[65] Jiang F, Wang H, Chen J M, et al . Regional CO 2 fluxes from 2010 to 2015 inferred from GOSAT XCO 2 retrievals using a new version of the global carbon assimilation system [J]. Atmospheric Chemistry and Physics , 2021, 21(3): 1963-1985.
[66] Zeng Z C, Lei L P, Hou S S, et al . A regional gap-filling method based on spatiotemporal variogram model of CO 2 columns [J]. IEEE Transactions on Geoscience and Remote Sensing , 2014, 52(6): 3594-3603.
[67] Tian X, Xie Z, Liu Y, et al . A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO 2 fluxes and 3-D atmospheric CO 2 concentrations from observations [J]. Atmospheric Chemistry and Physics , 2014, 14(23): 13281-13293.
[68] Engelen R J, Serrar S, Chevallier F. Four-dimensional data assimilation of atmospheric CO 2 using AIRS observations [J]. Journal of Geophysical Research: Atmospheres , 2009, 114: D03303.
[69] Zheng T, Nassar R, Baxter M. Estimating power plant CO 2 emission using OCO-2 XCO 2 and high resolution WRF-Chem simulations [J]. Environmental Research Letters , 2019, 14(8): 085001.
[70] Zheng B, Chevallier F, Ciais P, et al . Observing carbon dioxide emissions over China ′ s cities and industrial areas with the Orbiting Carbon Observatory-2 [J]. Atmospheric Chemistry and Physics , 2020, 20(14): 8501-8510.
[71] Kiel M, Eldering A, Roten D D, et al . Urban-focused satellite CO 2 observations from the Orbiting Carbon Observatory-3: A first look at the Los Angeles megacity [J]. Remote Sensing of Environment , 2021, 258: 112314.
[72] Xi X, Natraj V, Shia R L, et al . Simulated retrievals for the remote sensing of CO 2 , CH 4 , CO, and H 2 O from geostationary orbit [J]. Atmospheric Measurement Techniques , 2015, 8(11): 4817-4830.
[73] Polonsky I N, O ′ Brien D M, Kumer J B, et al . Performance of a geostationary mission, geoCARB, to measure CO 2 , CH 4 and CO column-averaged concentrations [J]. Atmospheric Measurement Techniques , 2014, 7(4): 959-981.
[74] Meijer Y J, Ingmann P, Lscher A, et al . CarbonSat: ESA ′ s Earth Explorer 8 Candidate Mission [Z]. 2012. https://www.resea-
[75] Buchwitz M, Reuter M, Bovensmann H, et al . Carbon Monitoring Satellite (CarbonSat): Assessment of atmospheric CO 2 and CH 4 retrieval errors by error parameterization [J]. Atmospheric Measurement Techniques , 2013, 6(12): 3477-3500.
[76] Reuter M, Buchwitz M, Schneising O, et al . Towards monitoring localized CO 2 emissions from space: Co-located regional CO 2 and NO 2 enhancements observed by the OCO-2 and S5P satellites [J]. Atmospheric Chemistry and Physics , 2019, 19(14): 9371-9383.
[77] Zheng B, Ciais P, Chevallier F, et al . Increasing forest fire emissions despite the decline in global burned area [J]. Science Advances , 2021, 7(39): eabh2646.
[78] Pandey S, Gautam R, Houweling S, et al . Satellite observations reveal extreme methane leakage from a natural gas well blowout [J]. Proceedings of the National Academy of Sciences of the United States of America , 2019, 116(52): 26376-26381.
[79] Varon D J, McKeever J, Jervis D, et al . Satellite discovery of anomalously large methane point sources from oil/gas production [J]. Geophysical Research Letters , 2019, 46(22): 13507-13516.
[80] Irakulis-Loitxate I, Guanter L, Liu Y N, et al . Satellite-based survey of extreme methane emissions in the Permian Basin [J]. Science Advances , 2021, 7(27): eabf4507.
[81] Dils B, Buchwitz M, Reuter M, et al . The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO 2 and CH 4 retrieval algorithm products with measurements from the TCCON [J]. Atmospheric Measurement Techniques , 2014, 7(6): 1723-1744.
[82] Buchwitz M, Reuter M, Schneising O, et al . The greenhouse gas project of ESA ′ s climate change initiative (GHG-CCI): Overview, achievements and future plans [J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences , 2015, XL-7/W3: 165-172.