[1] JANATI K I. Thermo-elastic behavior study of rotary kilns for cement plants[J]. Eng Fail Anal, 2020, 118: 104896.
[3] OKOJI A I, ANOZIE A N, OMOLEYE J A, et al. Energetic assessment of a precalcining rotary kiln in a cement plant using process simulator and neural networks[J]. Alex Eng J, 2022, 61(7): 5097-5109.
[4] LIU J, WANG Z, XIE G, et al. Resource utilization of municipal solid waste incineration fly ash-cement and alkali-activated cementitious materials: A review[J]. Sci Total Environ, 2022, 852: 158254.
[5] SAIKIA N, KATO S, KOJIMA T. Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash[J].Waste Manage, 2007, 27(9): 1178-1189.
[6] KLEIB J, AOUAD G, ABRIAK N E, et al. Production of Portland cement clinker from French Municipal Solid Waste Incineration Bottom Ash[J]. Case Stud Constr Mat, 2021, 15: e00629.
[7] WU K, SHI H, GUO X. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production[J]. Waste Manage, 2011, 31(9/10): 2001-2008.
[8] JANATI K I. Thermo-elastic behavior study of rotary kilns for cement plants[J]. Eng Fail Anal, 2020, 118: 104896.
[10] OKOJI A I, ANOZIE A N, OMOLEYE J A, et al. Energetic assessment of a precalcining rotary kiln in a cement plant using process simulator and neural networks[J]. Alex Eng J, 2022, 61(7): 5097-5109.
[11] MIRHOSSEINI M, REZANIA A, ROSENDAHL L. Power optimization and economic evaluation of thermoelectric waste heat recovery system around a rotary cement kiln[J]. J Clean Prod, 2019, 232: 1321-1334.
[12] LI B, CHEN H, CHEN J, et al. Improvement of thermal shock performance by residual stress field toughening in periclase-hercynite refractories[J]. Ceram Int, 2018, 44(1): 24-31.
[14] HAO M, CHEN S, YUAN L, et al. Effect of hercynite addition on the properties of magnesia-hercynite brick[J]. Bull Chin Ceram Soc, 2014, 33(11): 2822-2827.
[15] GRANADOS D A, CHEJNE F, MEJíA J M, et al. Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln[J]. Energy, 2014, 64: 615-625.
[16] WU G, YAN W, SCHAFFNER S, et al. A comparative study on the microstructures and mechanical properties of a dense and a lightweight magnesia refractories[J]. J Alloy Compd, 2019, 796: 131-137.
[17] CHEN Z, YAN W, SCHAFFNER S, et al. Microstructure and mechanical properties of lightweight Al2O3-C refractories using different carbon sources[J]. J Alloy Compd, 2021,862: 158036.
[18] PENG W, CHEN Z, YAN W, et al. Advanced lightweight periclase- magnesium aluminate spinel refractories with high mechanical properties and high corrosion resistance[J]. Constr Build Mater, 2021, 291: 123388.
[19] CHEN Z, YAN W, DAI Y, et al. Effect of microporous corundum aggregates on microstructure and mechanical properties of lightweight corundum refractories[J]. Ceram Int, 2019, 45: 8533-8538.
[20] YAN W, WU G, MA S, et al. Energy efficient lightweight periclase-magnesium alumina spinel castables containing porous aggregates for the working lining of steel ladles[J]. J Eur Ceram Soc, 2018, 38: 4276-4282.
[21] CHEN Z, YAN W, SCHAFFNER S, et al. Effect of SiC powder content on lightweight corundum-magnesium aluminate spinel castables[J]. J Alloy Compd, 2018, 764: 210-215.
[23] LIU G, LI N, YAN W, et al. Composition and microstructure of a periclase-composite spinel brick used in the burning zone of a cement rotary kiln[J]. Ceram Int, 2014, 40(6): 8149-8155.
[24] YAN W, CHEN Q, LI N, et al. Preparation and characterization of porous MgO-Al2O3 refractory aggregates using an in-situ decomposition pore-forming technique[J]. Ceram Int, 2015, 41: 515-520.
[25] SALOMO R, ARRUDA C C, PANDOLFELLI V C, et al. Designing high-temperature thermal insulators based on densification-resistant in situ porous spinel[J]. J Eur Ceram Soc, 2021, 41: 2923-2937