• High Power Laser and Particle Beams
  • Vol. 32, Issue 7, 072002 (2020)
Lai Wei1、2, Yong Chen2, Shaoyi Wang2, Quanping Fan2, Qiangqiang Zhang2, Zhong Zhang1, Zhanshan Wang1, and Leifeng Cao2、*
Author Affiliations
  • 1Key Laboratory of Advanced Micro-structured Materials MOE, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2Research Center of Laser Fusion, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202032.200117 Cite this Article
    Lai Wei, Yong Chen, Shaoyi Wang, Quanping Fan, Qiangqiang Zhang, Zhong Zhang, Zhanshan Wang, Leifeng Cao. Suppression of higher diffraction orders using quasiperiodic array of rectangular holes with large size tolerance[J]. High Power Laser and Particle Beams, 2020, 32(7): 072002 Copy Citation Text show less

    Abstract

    Advances in basic and applied research of conventional grating have been attracting much attention from optical engineering community. However, the higher orders diffraction contamination degrades the spectral purity obtained by conventional gratings seriously. Many designs of single-order or quasi-single-order gratings have been proposed to suppress higher-order diffraction contributions, however, their inhibitive effects on the higher order diffractions are restrained by the processing accuracy unavoidably. In this paper, we propose a grating that incorporates a quasi-periodical array of rectangular holes, and achieves larger tolerance of processing errors compared with the previously designed gratings by optimizing the probability density distribution function of the holes. This paper describes an analytical study of the diffraction property of this grating. Theoretical calculations reveal that the grating completely suppresses the 2nd, 3rd, and 4th orders diffractions, and the ratio of the 5th order diffraction efficiency to that of the 1st is as low as 0.01% even if relative errors for hole sizes exceed 20%, which greatly decreases the required processing accuracy.
    $I(p,q){\rm{ = }}{\left| {{\rm{FT}}\left[ {g(\xi ',\eta ')} \right]} \right|^2} \otimes {\left| {{\rm{FT}}\left( {{L_n}} \right)} \right|^2}$(1)

    View in Article

    $ {L_n} = \frac{{\rm{1}}}{{N\displaystyle\iint\limits_{\left( {{\xi }_{n}},{{\eta }_{n}} \right)}{{\mathit{\Gamma}} \left( {{\xi }_{n}},{{\eta }_{n}} \right){\rm{d}}{{\xi }_{n}}{\rm{d}}{{\eta }_{n}}}}} {\mathit{\Gamma}} \left( {{\xi _n},{\eta _n}} \right) \otimes \sum\limits_{(h,l)} \delta \left( {{\xi _n}{\rm{ - }}h{d_1},{\eta _n} - l{d_2}} \right) $ (2)

    View in Article

    $\int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } {{L_n}{\rm{d}}{\xi _n}{\rm{d}}{\eta _n}} } = 1$(3)

    View in Article

    $\!\!{\left| {{\rm{FT}}\left( {{L_n}} \right)} \right|^2}{\rm{ = }}N{\rm{ + }}N{\rm{(}}N{\rm{ - 1)}}\!\int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } \!{{L_{nm}}} {C_n}C_m^*{\rm{d}}{\xi _n}{\rm{d}}{\eta _n}{\rm{d}}{\xi _m}{\rm{d}}{\eta _m}} } } \!\!\!\!\!\!\!\!\!\!\!\!$(4)

    View in Article

    $ \;\!{L_{nm}} \!=\!\frac{{\rm{1}}}{N(N-1){{\left( \displaystyle\iint\limits_{\left( {{\xi }_{n}},{{\eta }_{n}} \right)}{\!{\mathit{\Gamma}} \left( {{\xi }_{n}},{{\eta }_{n}} \right){\rm{d}}{{\xi }_{n}}{\rm{d}}{{\eta }_{n}}} \right)}^{2}}} \left( {{\mathit{\Gamma}} \left( {{\xi _n},{\eta _n}} \right) \otimes \!\!\sum\limits_{(h,l)} \delta \left( {{\xi _n} - h{d_1},{\eta _n} - l{d_2}} \right)} \right)\! \left( {{\mathit{\Gamma}} \left( {{\xi _m},{\eta _m}} \right) \otimes\! \!\sum\limits_{(h',l') \ne (h,l)} \delta \left( {{\xi _m} - h'{d_1},{\eta _m} - l'{d_2}} \right)} \right)\!\!\!\!\!\!$ (5)

    View in Article

    $\overline {I\left( {p,q} \right)} = {I_0}\left( {p,q} \right)\left[ {N + {B^2}\left( {{D^2} - N} \right)} \right]$(6)

    View in Article

    $ \left\{ \begin{array}{l} {I_0}\left( {p,q} \right) = {\left| {{\rm{FT}}\left[ {g(\xi ',\eta ')} \right]} \right|^2} \; \\ B = {\rm{FT}}\left[ {{\mathit{\Gamma}} \left( {{\xi _n},{\eta _n}} \right)} \right]\Bigg/ {\displaystyle\iint\limits_{\left( {{\xi _n},{\eta _n}} \right)} {{\mathit{\Gamma}} \left( {{\xi _n},{\eta _n}} \right){\rm{d}}{\xi _n}{\rm{d}}{\eta _n}}} \; \\ D = \dfrac{{\sin \left[ {(2H + 1)k{d_{\rm{1}}}p/2} \right]}}{{\sin (k{d_{\rm{1}}}p/2)}} \dfrac{{\sin \left[ {(2L + 1)k{d_{\rm{2}}}q/2} \right]}}{{\sin (k{d_{\rm{2}}}q/2)}} \end{array} \right. $(7)

    View in Article

    ${\mathit{\Gamma}} \left( {{\xi _n},{\eta _n}} \right){\rm{ = }}{\mathit{\Gamma}} \left( {{\eta _n}} \right) {\mathit{\Gamma}} \left( {{\xi _n}} \right){\rm{ = }}\delta \left( {{\eta _n}} \right) \left[ {{\rm{rect}}\left( {{\rm{2}}{\xi _n}/{d_1}} \right) \otimes {\rm{rect}}\left( {3{\xi _n}/{d_1}} \right)} \right]$(8)

    View in Article

    $B = {\rm{sinc}} \left( {{d_1}p/3\lambda } \right){\rm{sinc}} \left( {{d_1}p/2\lambda } \right)$(9)

    View in Article

    $\overline {I(m\lambda /d,0)} = \left\{ {\begin{array}{*{20}{l}} {{N^2}{I_0}(0,0),}&{m = 0}\\ {\left[ {N + N\left( {N - 1} \right)\dfrac{{{\rm{3}}\sqrt {\rm{3}} }}{{{m^{\rm{4}}}{{\rm{{\text{π}} }}^2}}}} \right]{I_0}(m\lambda /d,0),}&{m = \pm (6t \pm 1),t = 1,2,3, \cdots }\\ {N{I_0}(m\lambda /d,0),}&{m = \pm 2t, \pm 3t,t = 1,2,3, \cdots } \end{array}} \right.$(10)

    View in Article

    $\overline {I(5\lambda /d,0)} {\rm{/}}\overline {I(\lambda /d,0)} {\rm{ = \frac{1}{156\;25}}}$(11)

    View in Article

    Lai Wei, Yong Chen, Shaoyi Wang, Quanping Fan, Qiangqiang Zhang, Zhong Zhang, Zhanshan Wang, Leifeng Cao. Suppression of higher diffraction orders using quasiperiodic array of rectangular holes with large size tolerance[J]. High Power Laser and Particle Beams, 2020, 32(7): 072002
    Download Citation