• Acta Photonica Sinica
  • Vol. 48, Issue 10, 1048003 (2019)
WU Chun-jiang* and FENG Su-chun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20194810.1048003 Cite this Article
    WU Chun-jiang, FENG Su-chun. Generation of High Repetition Rate Broadband Flat Coherent Optical Frequency Comb Based on Tantalum Pentoxide Integrated Nonlinear Optical Waveguide[J]. Acta Photonica Sinica, 2019, 48(10): 1048003 Copy Citation Text show less
    References

    [1] LUNDBERG L, KARLSSON M, LORENCES-RIESGO A,et al. Frequency comb-based WDM transmission systems enabling joint signal processing[J]. Applied Sciences, 2018, 8(5): 718-742.

    [2] HILLERKUSS D, SCHMOGROW R, SCHELLINGER T,et al. 26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing[J]. Nature Photonics, 2011, 5(6): 364-371.

    [3] JIANG Z, HUANG C B, LEAIRD D E,et al. Optical arbitrary waveform processing of more than 100 spectral comb lines[J]. Nature Photonics, 2007, 1(8): 463-467.

    [4] BARTELS A, HEINECKE D, DIDDAMS S A. Passively mode-locked 10 GHz femtosecond Ti: sapphire laser[J].Optics Letters, 2008, 33(16): 1905-1907.

    [5] DUAN G H, SHEN A, AKROUT A,et al. High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications[J]. Bell Labs Technical Journal, 2009, 14(3): 63-84.

    [6] IMRAN M, ANANDARAJAH P M, KASZUBOWSKA-ANANDARAJAH A,et al. A survey of optical carrier generation techniques for terabit capacity elastic optical networks[J]. IEEE Communications Surveys & Tutorials, 2017, 20(1): 211-263.

    [7] Calmarlaser[EB/OL]. [2019-08-19]. http://www.calmarlaser.com/products/fiber_laser/eureka.php

    [8] BEHA K, COLE D C, DEL’HAYE P,et al. Electronic synthesis of light[J]. Optica, 2017, 4(4): 406-411.

    [9] DAI J, DAI Y, YIN F, et al. Compact optoelectronic oscillator based on a Fabry-Perot resonant electro-optic modulator[J]. Chinese Optics Letters, 2016, 14(11): 110701.

    [10] ZHANG M, BUSCAINO B, WANG C,et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568(7752): 373-377.

    [11] KIPPENBERG T J, GAETA A L, LIPSON M,et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 2018, 361(6402): eaan8083.

    [12] KIM S, HAN K, WANG C,et al. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators[J]. Nature Communications, 2017, 8(1): 372-379.

    [13] WANG S, GUO H, BAI X,et al. Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion[J]. Optics Letters, 2014, 39(10): 2880-2883.

    [14] TAKARA H. Multiple optical carrier generation from a supercontinuum source[J]. Optics and Photonics News, 2002, 13(3): 48-51.

    [15] TACCHEO S, ENNSER K, FORIN D,et al. Supercontinuum-based devices for telecom applications[C]. 2006 IEEE International Conference on Transparent Optical Networks, 2006, 1: 32-36.

    [16] FINOT C, KIBLER B, PROVOST L,et al. Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers[J]. Journal of the Optical Society of America B, 2008, 25(11): 1938-1948.

    [17] HEIDT A M, FEEHAN J S, PRICE J H V,et al. Limits of coherent supercontinuum generation in normal dispersion fibers[J]. Journal of the Optical Society of America B, 2017, 34(4): 764-775.

    [18] MYSLIVETS E, KUO B P P, ALIC N,et al. Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion[J]. Optics Express, 2012, 20(3): 3331-3344.

    [19] LI Q, HUANG Y, JIA Z,et al. Design of fluorotellurite microstructured fibers with near-zero-flattened dispersion profiles for optical-frequency comb generation[J]. Journal of Lightwave Technology, 2018, 36(11): 2211-2215.

    [20] GAETA A L, LIPSON M, KIPPENBERG T J. Photonic-chip-based frequency combs[J].Nature Photonics, 2019, 13(3): 158-169.

    [21] DUCHESNE D, PECCIANTI M, LAMONT M R E,et al. Supercontinuum generation in a high index doped silica glass spiral waveguide[J]. Optics Express, 2010, 18(2): 923-930.

    [22] JI Xing-chen, BARBOSA F A S, ROBERTS S P, et al.Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold[J]. Optica, 2017, 4:619-624

    [23] TAN D T H, OOI K J A, NG D K T. Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform[J].Photonics Research, 2018, 6(5): B50-B66.

    [24] SAINI T S, HOA N P T, NAGASAKA K,et al. Coherent midinfrared supercontinuum generation using a rib waveguide pumped with 200 fs laser pulses at 2.8 μm[J]. Applied Optics, 2018, 57(7): 1689-1693.

    [25] DU Q, LUO Z, ZHONG H,et al. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide[J]. Photonics Research, 2018, 6(6): 506-510.

    [26] LIU X, SUN C, XIONG B,et al. Integrated high-Q crystalline AlN microresonators for broadband Kerr and Raman frequency combs[J]. ACS Photonics, 2018, 5(5): 1943-1950.

    [27] STASSEN E, PU M, SEMENOVA E, et al. High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics[J]. Optics Letters, 2019, 44(5): 1064-1067.

    [28] WILSON D J, SCHNEIDER K, HOENL S,et al. Gallium phosphide nonlinear photonics[J]. arXiv preprint arXiv:1808.03554, 2018.

    [29] HU H, DA ROS F, PU M,et al. Single-source chip-based frequency comb enabling extreme parallel data transmission[J]. Nature Photonics, 2018, 12(8): 469-473.

    [30] YU M, DESIATOV B, OKAWACHI Y,et al. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides[J]. Optics Letters, 2019, 44(5): 1222-1225.

    [31] WU C L, HUANG J Y, OU D H, et al. Efficient wavelength conversion with low operation power in a Ta2O5-based micro-ring resonator[J]. Optics Letters, 2017, 42(23): 4804-4807.

    [32] OKAWACHI Y, YU M, CARDENAS J, et al. Coherent, directional supercontinuum generation[J]. Optics Letters, 2017, 42(21): 4466-4469.

    [33] GUO H, HERKOMMER C, BILLAT A,et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides[J]. Nature Photonics, 2018, 12(6): 330-335.

    [34] LACAVA C, ETTABIB M, PETROPOULOS P. Nonlinear silicon photonic signal processing devices for future optical networks[J].Applied Sciences, 2017, 7(1): 103.

    [35] FAN R, WU C L, LIN Y Y,et al. Visible to near-infrared octave spanning supercontinuum generation in tantalum pentoxide (Ta2O5) air-cladding waveguide[J]. Optics Letters, 2019, 44(6): 1512-1515.

    [36] CHANELIERE C, AUTRAN J L, DEVINE R A B,et al. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications[J]. Materials Science and Engineering: R: Reports, 1998, 22(6): 269-322.

    [37] BELT M, DAVENPORT M L, BOWERS J E,et al. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates[J]. Optica, 2017, 4(5): 532-536.

    [38] ITOH M, KOMINATO T, ABE M,et al. Low-loss silica-based SiO2-Ta2O5 waveguides with extremely high Δ fabricated using sputtered thin films[J]. Journal of Lightwave Technology, 2015, 33(2): 318-323.

    [39] LYSENKO O, BACHE M, LAVRINENKO A. Nonlinear optical model for strip plasmonic waveguides[J].Journal of the Optical Society of America B, 2016, 33(7): 1341-1348.

    [40] MALITSON I H. Interspecimen comparison of the refractive index of fused silica[J].Journal of the Optical Society of America A, 1965, 55(10): 1205-1209.

    [41] MA Hui-fang. Research on the generation and performance optimization of supercontinuum in microstructured fiber[D]. Beijing: Beijing University of Posts and Telecommunications, 2013.

    [42] CHEN Gen-xiang, Fundamentals of optical communication technology [M]. Beijing: Higher Education Press, 2010.

    [43] DUDLEY J M. Supercontinuum generation in optical fibers[M]. Cambridge University Press, 2010.

    [44] DUDLEY J M, GENTY G, COEN S. Supercontinuum generation in photonic crystal fiber[J].Reviews of Modern Physics, 2006, 78(4): 1135.

    [45] WU R, COMPANY V T, LEAIRD D E,et al. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation[J]. Optics Express, 2013, 21(5): 6045-6052.

    [46] AGRAWAL G. Nonlinear fiber optics[M]. 5th ed., Academic Press, 2013.

    [47] JIA Nan, LI Tang-jun, SUN Jian, et al. Coherence properties of supercontinuum generated by a picosecond pulse in normal dispersion region of highly nonlinear fiber[J]. Acta Physica Sinica, 2014, 63(8): 084203.

    WU Chun-jiang, FENG Su-chun. Generation of High Repetition Rate Broadband Flat Coherent Optical Frequency Comb Based on Tantalum Pentoxide Integrated Nonlinear Optical Waveguide[J]. Acta Photonica Sinica, 2019, 48(10): 1048003
    Download Citation