• Chinese Journal of Lasers
  • Vol. 42, Issue 7, 703005 (2015)
Wang Zhilong*, Luo Kaiyu, Liu Yue, and Lu Jinzhong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/cjl201542.0703005 Cite this Article Set citation alerts
    Wang Zhilong, Luo Kaiyu, Liu Yue, Lu Jinzhong. Molecular Dynamics Simulation of Plastic Deformation of Polycrystalline Cu under Mechanical Effect with Ultrahigh Strain Rate[J]. Chinese Journal of Lasers, 2015, 42(7): 703005 Copy Citation Text show less
    References

    [1] X C Li, Y K Zhang, Y L Lu, et al.. Research of corrosion resistance for AZ31Magnesium alloy by laser shock processing[J]. Chinese J Lasers, 2014, 37(4): 0403002.

    [2] Y Chai, J Ren, W F He, et al.. Effect of laser shock processing on the fatigue property of K4030 alloy blade[J]. Laser & Optoelectronics Progress, 2014, 51(1): 011405.

    [3] M Luo, K Y Luo, Q W Wang, et al.. Numerical simulation of laser shock peening on residual stress field of 7075-T6 aluminum alloy welding[J]. Acta Optica Sinica, 2014, 34(4): 0414003.

    [4] J Z Lu, K Y Luo, A X Feng, et al.. Micro-structure enhancement mechanism of LY2 aluminum alloy by means of a single laser shock processing[J]. Chinese J Lasers, 2010, 37(10): 2662-2666.

    [5] J Z Lu, K Y Luo, Y K Zhang, et al.. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994.

    [6] B J Alder, T E Wainwright. Studies in molecular dynamics.Ⅰ. general method[J]. The Journal of Chemical Physics, 1959, 31(2): 459-466.

    [7] Zhang Junjie. Molecular Dynamics Study of Generation Mechanism of Surface Layer in Nanomechanical Machining of Crystalline Copper[D]. Harbin: Harbin Institute of Technology, 2011.

    [8] Wang Guimin. Molecular Dynamics Simulation of the Mechanical Behavior of Nanotwinned Copper[D]. Hangzhou: Zhejiang University, 2011.

    [9] T Kadoyoshi, H Kaburaki, F Shimizu, et al.. Molecular dynamics study on the formation of stacking fault tetrahedra and unfaulting of Frank loops in fcc metals[J]. Acta Materialia, 2007, 55(9): 3073-3080.

    [10] J Schiotz, T Vegge, F D DiTolla, et al.. Atomic- scale simulations of the mechanical deformation of nanocrystalline metals[J]. Physical Review B, 1999, 60(17): 11971-11983.

    [11] S Plimpton. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117: 1-19.

    [12] J Cai, Y Y Ye. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys.[J]. Physical Review B Condensed Matter, 1996, 54(12): 8398-8410.

    [13] W Ma, W J Zhu, Y L Zhang, et al.. Construction of metallic nanocrystalline samples by molecular dynamics simulation[J]. Acta Physica Sinica, 2010, 59(7): 4781-4787.

    [14] A P Gerlich, L Yue, P F Mendez, et al.. Plastic deformation of polycrystalline aluminum at high temperatures and strain rate[J]. Acta Materialia, 2010, 58(6): 2176-2185.

    [15] G J Ackland, A P Jones. Applications of local crystal structure measures in experiment and simulation[J]. Physical Review B, 2006, 73(5): 054104.

    [16] W Humphrey, A Dalke, K Schulten. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.

    [17] H F Lou, M P Wang, N Tang, et al.. Microstructures of twin- roll cast AZ31B Mg alloy and its deformation mechanism[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(9): 1584-1589.

    [18] J P Hirth, J Lothe. Theory of Dislocations[M]. New York: Wiley & Sons, 1982.

    [19] M D Sangid, T Ezaz, H Sehitoglu, et al.. Energy of slip transmission and nucleation at grain boundaries[J]. Acta Materialia, 2011, 59(1): 283-296.

    Wang Zhilong, Luo Kaiyu, Liu Yue, Lu Jinzhong. Molecular Dynamics Simulation of Plastic Deformation of Polycrystalline Cu under Mechanical Effect with Ultrahigh Strain Rate[J]. Chinese Journal of Lasers, 2015, 42(7): 703005
    Download Citation