• High Power Laser and Particle Beams
  • Vol. 35, Issue 11, 114005 (2023)
Yutao Han1, Renkai Li2, and Weishi Wan1
Author Affiliations
  • 1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 2Department of Engineering Physics, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.11884/HPLPB202335.230074 Cite this Article
    Yutao Han, Renkai Li, Weishi Wan. Measurement of transverse phase space based on machine learning[J]. High Power Laser and Particle Beams, 2023, 35(11): 114005 Copy Citation Text show less
    References

    [1] Zhao Zhentang. Principles key technologies of advanced Xray light source accelerats[M]. Shanghai: Shanghai Jiao Tong University Press, 2020: 164165

    [2] Gordon M, Li W H, Andorf M B, et al. Four-dimensional emittance measurements of ultrafast electron diffraction optics corrected up to sextupole order[J]. Physical Review Accelerators and Beams, 25, 084001(2022).

    [3] Feist A, Bach N, Rubiano da Silva N, et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam[J]. Ultramicroscopy, 176, 63-73(2017).

    [4] Du Yingchao, Huang Wenhui, Tang Chuanxiang, . Preliminary experiments of Thomson scattering X-ray source: measurements of electron beam’s parameters and their influence on the X-ray performance[J]. High Energy Physics and Nuclear Physics, 30, 84-86(2006).

    [5] Brown W J, Anderson S G, Barty C P J, et al. Experimental characterization of an ultrafast Thomson scattering X-ray source with three-dimensional time and frequency-domain analysis[J]. Physical Review Accelerators and Beams, 7, 060702(2004).

    [6] Nagaitsev S, Huang Z, Power J, et al. Accelerat beam physics research goals opptunities[R]. FERMILABFN1123, 2021.

    [7] Behrens C, Decker F J, Ding Y, et al. Few-femtosecond time-resolved measurements of X-ray free-electron lasers[J]. Nature Communications, 5, 3762(2014).

    [8] Rao Y N, Baartman R. Transverse phase space tomography in TRIUMf injection beamline[C]Proceedings of IPAC2011. 2011.

    [9] Yu Qinglin, Gu Duan, Zhang Meng, et al. Transverse phase space reconstruction study in Shanghai soft X-ray FEL facility[J]. Nuclear Science and Techniques, 29, 9(2018).

    [10] McKee C B, O’Shea P G, Madey J M J. Phase space tomography of relativistic electron beams[J]. Nuclear Instruments Methods in Physics Research Section A: Accelerats, Spectrometers, Detects Associated Equipment, 1995, 358(13): 264267.

    [11] Hermann B, Guzenko V A, Hürzeler O R, et al. Electron beam transverse phase space tomography using nanofabricated wire scanners with submicrometer resolution[J]. Physical Review Accelerators and Beams, 24, 022802(2021).

    [12] Du Yingchao, Xiang Dao, Huang Wenhui, . Transverse phase space measurement based on computerized tomography[J]. High Energy Physics and Nuclear Physics, 30, 888-891(2006).

    [13] Tuy H K. An inversion formula for cone-beam reconstruction[J]. SIAM Journal on Applied Mathematics, 43, 546-552(1983).

    [14] Romanov A. Beam phase space tomography at fast electron linac at Fermilab[R]. FERMILABCONF18321AD, 2018.

    [15] Stratakis D, Kishek R A, Li H, et al. Tomography as a diagnostic tool for phase space mapping of intense particle beams[J]. Physical Review Accelerators and Beams, 9, 112801(2006).

    [16] Andersen A H, Kak A C. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm[J]. Ultrasonic Imaging, 6, 81-94(1984).

    [17] Hock K M, Ibison M G. A study of the maximum entropy technique for phase space tomography[J]. Journal of Instrumentation, 8, P02003(2013).

    [18] Scheinker A, Cropp F, Paiagua S, et al. Adaptive deep learning f timevarying systems with hidden parameters: predicting changing input beam distributions of compact particle accelerats[J]. 2021.doi: 10.21203rs.3.rs373311v1.

    [19] Wang Minwen, Wang Zhongming, Wang Di, et al. Fourdimensional phase space measurement using multiple twodimensional profiles[J]. Nuclear Instruments Methods in Physics Research Section A: Accelerats, Spectrometers, Detects Associated Equipment, 2019, 943: 162438.

    [20] Hock K M, Ibison M G, Holder D J, et al. Beam tomography in transverse nmalised phase space[J]. Nuclear Instruments Methods in Physics Research Section A: Accelerats, Spectrometers, Detects Associated Equipment, 2011, 642(1): 3644.

    [21] Yu Qinglin. Study on beam transverse phase space reconstruction technology[D]. Shanghai: Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2018

    [22] Wang Ge, Ye J C, De Man B. Deep learning for tomographic image reconstruction[J]. Nature Machine Intelligence, 2, 737-748(2020).

    [23] Wolski A, Johnson M A, King M, et al. Transverse phase space tomography in an accelerator test facility using image compression and machine learning[J]. Physical Review Accelerators and Beams, 25, 122803(2022).

    [24] Radon J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten[J]. Berichte uber die Verhandlungen Gesellshaft der Wissenschaften zu Leipzig. Journal of Mathematical Physics, 69, 262-277(1917).

    [25] Hounsfield G N. Computerized transverse axial scanning (tomography): Part 1. Description of system[J]. The British Journal of Radiology, 46, 1016-1022(1973).

    [26] Ser O R, Minerbo G N, Jameson R A, et al. Beam tomography in two four dimensions [100 MeV H+ beams 750 keV H− beams][R]. LAUR792540; CONF79092720, 1979: 6.

    [27] Lee D, Choi S, Kim H J. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains[J]. Medical Physics, 46, 104-115(2019).

    [28] Liu Yong. Interpolation technology its application in CT reconstruction[D]. Tianjin: Tianjin University of Technology Education, 2022

    [29] Kalke M, Siltanen S. Sinogram interpolation method for sparse-angle tomography[J]. Applied Mathematics, 5, 423-441(2014).

    [30] Han Y S, Yoo J, Ye J C. Deep residual learning f compressed sensing CT reconstruction via persistent homology analysis[DBOL]. arXiv preprint arXiv: 1611.06391, 2016.

    [31] Ronneberger O, Fischer P, Brox T. U: convolutional wks f biomedical image segmentation[C]Proceedings of the 18th International Conference on Medical Image Computing ComputerAssisted Intervention. 2015.

    [32] Yu Yang, Gong Zhiqiang, Zhong Ping, et al. Unsupervised representation learning with deep convolutional neural wk f remote sensing images[C]Proceedings of the 9th International Conference on Image Graphics. 2017.

    [33] Chen Hu, Zhang Yi, Kalra M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 36, 2524-2535(2017).

    [34] Xiang Dao, Du Yingchao, Yan Lixin, et al. Transverse phase space tomography using a solenoid applied to a thermal emittance measurement[J]. Physical Review Accelerators and Beams, 12, 022801(2009).

    [35] Roussel R, Edelen A, Mayes C, et al. Phase space reconstruction from accelerat beam measurements using neural wks differentiable simulations[DBOL]. arXiv preprint arXiv: 2209.04505, 2023.

    [36] ASTRA. Klaus floettmann DESY[CPOL]. Hamburg, Germany: DESY, 2017. https:www.desy.de~mpyflo.

    [37] Gupta L. Measured Data set[ZOL]. V1. Harvard Dataverse, 2021. https:doi.g10.7910DVNMVE1YC.

    [38] Hock K M, Wolski A. Tomographic reconstruction of the full 4D transverse phase space[J]. Nuclear Instruments Methods in Physics Research Section A: Accelerats, Spectrometers, Detects Associated Equipment, 2013, 726: 816.

    [39] Du Yingchao. Measurement of six dimensional phase space distribution of high brightness electron beam based on CT algithm[R]. 2011: 8

    Yutao Han, Renkai Li, Weishi Wan. Measurement of transverse phase space based on machine learning[J]. High Power Laser and Particle Beams, 2023, 35(11): 114005
    Download Citation