• High Power Laser and Particle Beams
  • Vol. 34, Issue 11, 112001 (2022)
Zitao Wang, Weimin Zhou*, Zhigang Deng*, and Yaoxiang Song
Author Affiliations
  • Science and Technology on Plasma Laboratory, Laser Fusion Research Center, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202234.220067 Cite this Article
    Zitao Wang, Weimin Zhou, Zhigang Deng, Yaoxiang Song. Laser electron acceleration in pre-plasma-filled channel targets[J]. High Power Laser and Particle Beams, 2022, 34(11): 112001 Copy Citation Text show less
    References

    [1] Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Physical Review Letters, 85, 2945-2948(2000).

    [2] Willingale L, Mangles S P D, Nilson P M, et al. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma[J]. Physical Review Letters, 96, 245002(2006).

    [3] Roth M, Jung D, Falk K, et al. Bright laser-driven neutron source based on the relativistic transparency of solids[J]. Physical Review Letters, 110, 044802(2013).

    [4] Vranic M, Klimo O, Korn G, et al. Multi-GeV electron-positron beam generation from laser-electron scattering[J]. Scientific Reports, 8, 4702(2018).

    [5] Stark D J, Toncian T, Arefiev A V. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field[J]. Physical Review Letters, 116, 185003(2016).

    [6] Huang T W, Kim C M, Zhou C T, et al. Highly efficient laser-driven Compton gamma-ray source[J]. New Journal of Physics, 21, 013008(2019).

    [7] Yu J Q, Hu R H, Gong Z, et al. The generation of collimated γ-ray pulse from the interaction between 10 PW laser and a narrow tube target[J]. Applied Physics Letters, 112, 204103(2018).

    [8] Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 16, 810-814(2020).

    [9] Theobald W, Solodov A A, Stoeckl C, et al. Initial cone-in-shell fast-ignition experiments on OMEGA[J]. Physics of Plasmas, 18, 056305(2011).

    [10] Jarrott L C, Wei M S, McGuffey C, et al. Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets[J]. Nature Physics, 12, 499-504(2016).

    [11] Drake R P. High-energy-density physics[J]. Physics Today, 63, 28-33(2010).

    [12] Del Sorbo D, Feugeas J L, Nicolaï P, et al. Extension of a reduced entropic model of electron transport to magnetized nonlocal regimes of high-energy-density plasmas[J]. Laser and Particle Beams, 34, 412-425(2016).

    [13] Verbeeck J, Tian H, Schattschneider P. Production and application of electron vortex beams[J]. Nature, 467, 301-304(2010).

    [14] Arnould M, Goriely S, Takahashi K. The r-process of stellar nucleosynthesis: astrophysics and nuclear physics achievements and mysteries[J]. Physics Reports, 450, 97-213(2007).

    [15] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 55, 447-449(1985).

    [16] Danson C, Hillier D, Hopps N, et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 3, e3(2015).

    [17] Faure J, Glinec A, Pukhov A, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 431, 541-544(2004).

    [18] Pukhov A, Meyer-Ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 74, 355-361(2002).

    [19] Pukhov A, Sheng Z M, Meyer-Ter-Vehn J. Particle acceleration in relativistic laser channels[J]. Physics of Plasmas, 6, 2847-2854(1999).

    [20] Tsakiris G D, Gahn C, Tripathi V K. Laser induced electron acceleration in the presence of static electric and magnetic fields in a plasma[J]. Physics of Plasmas, 7, 3017-3030(2000).

    [21] Gahn C, Tsakiris G D, Pukhov A, et al. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels[J]. Physical Review Letters, 83, 4772-4775(1999).

    [22] Brunel F. Not-so-resonant, resonant absorption[J]. Physical Review Letters, 59, 52-55(1987).

    [23] Arefiev A V, Khudik V N, Robinson A P L, et al. Beyond the ponderomotive limit: direct laser acceleration of relativistic electrons in sub-critical plasmas[J]. Physics of Plasmas, 23, 056704(2016).

    [24] Wang H Y, Lin C, Sheng Z M, et al. Laser shaping of a relativistic intense, short Gaussian pulse by a plasma lens[J]. Physical Review Letters, 107, 265002(2011).

    [25] Hussein A E, Arefiev A V, Batson T, et al. Towards the optimisation of direct laser acceleration[J]. New Journal of Physics, 23, 023031(2021).

    [26] Thévenet M, Leblanc A, Kahaly S, et al. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors[J]. Nature Physics, 12, 355-360(2016).

    [27] Snyder J, Ji L L, George K M, et al. Relativistic laser driven electron accelerator using micro-channel plasma targets[J]. Physics of Plasmas, 26, 033110(2019).

    [28] Gong Z, Robinson A P L, Yan X Q, et al. Highly collimated electron acceleration by longitudinal laser fields in a hollow-core target[J]. Plasma Physics and Controlled Fusion, 61, 035012(2019).

    [29] Xiao K D, Huang T W, Ju L B, et al. Energetic electron-bunch generation in a phase-locked longitudinal laser electric field[J]. Physical Review E, 93, 043207(2016).

    [30] Ji L L, Snyder J, Pukhov A, et al. Towards manipulating relativistic laser pulses with micro-tube plasma lenses[J]. Scientific Reports, 6, 23256(2016).

    [31] He Wu, Zhou Weimin, Zhang Zhimeng, . High-energy collimated electron acceleration from ultra-intense laser interaction with tube targets[J]. High Power Laser and Particle Beams, 27, 072003(2015).

    [32] Ji Liangliang, Geng Xuesong, Wu Yitong, . Laser-driven radiation-reaction effect and polarized particle acceleration[J]. Acta Physica Sinica, 70, 085203(2021).

    [33] Gong Zheng, Mackenroth F, Wang Tao, et al. Direct laser acceleration of electrons assisted by strong laser-driven azimuthal plasma magnetic fields[J]. Physical Review E, 102, 013206(2020).

    [34] Wang Tao, Gong Zheng, Chin K, et al. Impact of ion dynamics on laser-driven electron acceleration and gamma-ray emission in structured targets at ultra-high laser intensities[J]. Plasma Physics and Controlled Fusion, 61, 084004(2019).

    [35] Ji L L, Snyder J, Shen B F. Single-pulse laser-electron collision within a micro-channel plasma target[J]. Plasma Physics and Controlled Fusion, 61, 065019(2019).

    [36] Arber T D, Bennett K, Brady C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling[J]. Plasma Physics and Controlled Fusion, 57, 113001(2015).

    Zitao Wang, Weimin Zhou, Zhigang Deng, Yaoxiang Song. Laser electron acceleration in pre-plasma-filled channel targets[J]. High Power Laser and Particle Beams, 2022, 34(11): 112001
    Download Citation