• Chinese Journal of Lasers
  • Vol. 48, Issue 3, 0303001 (2021)
Yu Liang1, Yuanyuan Xu1、*, Yang Zou2, Shuangshuang Xue1, Jingrong Liao3, Wenyan Pan1, and Yawei Wang1
Author Affiliations
  • 1School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
  • 2Jingjiang College, Jiangsu University, Zhenjiang, Jiangsu 212013, China
  • 3School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
  • show less
    DOI: 10.3788/CJL202148.0303001 Cite this Article Set citation alerts
    Yu Liang, Yuanyuan Xu, Yang Zou, Shuangshuang Xue, Jingrong Liao, Wenyan Pan, Yawei Wang. Design of Achromatic Polarization-Insensitive Metalens[J]. Chinese Journal of Lasers, 2021, 48(3): 0303001 Copy Citation Text show less
    References

    [1] Wintz D, Genevet P, Ambrosio A et al. Holographic metalens for switchable focusing of surface plasmons[J]. Nano Letters, 15, 3585-3589(2015). http://www.ncbi.nlm.nih.gov/pubmed/25915541

    [2] Fu B Y, Zou X J, Li T et al. Review: chromatic dispersion manipulation based on optical metasurfaces[J]. Journal of Harbin Institute of Technology (New Series), 27, 1-19(2020). http://www.cqvip.com/QK/86045X/202003/7102228259.html

    [3] Cao C, Liao S, Liao Z Y et al. Design of off-axis reflective optical system with large field-of-view based on freeform surfaces[J]. Acta Optica Sinica, 40, 0808001(2020).

    [4] Siddique R H, Mertens J, Hölscher H et al. Scalable and controlled self-assembly of aluminum-based random plasmonic metasurfaces[J]. Light: Science & Applications, 6, e17015(2017). http://www.nature.com/articles/lsa201715

    [5] Chen W T, Zhu A Y, Sisler J et al. Broadband achromatic metasurface-refractive optics[J]. Nano Letters, 18, 7801-7808(2018). http://www.ncbi.nlm.nih.gov/pubmed/30423252

    [6] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 11, 23-36(2016).

    [7] Li H, Yu J, Chen Z. Switchable broadband absorber/reflector with polarization-independent and incident angle-insensitive based on single-layer graphene[J]. Chinese Journal of Lasers, 47, 0803001(2020).

    [8] Gu M M, Wang D W, Chen X L et al[J]. Research progress of silicon photonic polarization beam-splitting rotary devices Laser & Optoelectronics Progress, 57, 170002.

    [9] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017). http://www.ncbi.nlm.nih.gov/pubmed/28775300

    [10] Cheng Q Q, Ma M L, Yu D et al. Broadband achromatic metalens in terahertz regime[J]. Science Bulletin, 64, 1525-1531(2019). http://www.researchgate.net/publication/336705435_Broadband_achromatic_metalens_in_Terahertz_regime

    [11] Wintz D, Genevet P, Ambrosio A et al. Holographic metalens for switchable focusing of surface plasmons[J]. Nano Letters, 15, 3585-3589(2015). http://www.ncbi.nlm.nih.gov/pubmed/25915541

    [12] Zhu R, Tao C X, Yu Z et al. Design and fabrication of a 248nm near-linearly graded transmittance optical film[J]. Chinese Journal of Lasers, 47, 0603001(2020).

    [14] Ni X J, Ishii S, Kildishev A V et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2, e72(2013). http://www.nature.com/articles/lsa201328

    [15] Khorasaninejad M, Aieta F, Kanhaiya P et al. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano Letters, 15, 5358-5362(2015). http://pubs.acs.org/doi/10.1021/acs.nanolett.5b01727

    [16] Chen W T, Zhu A Y, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 13, 220-226(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=3a265a30f394a37793e5b7ce25412632

    [17] Luo X G, Pu M B, Li X et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 6, e16276(2017). http://www.nature.com/articles/lsa2016276

    [18] Maguid E, Yulevich I, Yannai M et al. Multifunctional interleaved geometric-phase dielectric metasurfaces[J]. Light: Science & Applications, 6, e17027(2017).

    [19] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018). http://www.ncbi.nlm.nih.gov/pubmed/29379204

    [20] Chen W T, Zhu A Y, Sisler J et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J]. Nature Communications, 10, 355(2019). http://www.researchgate.net/publication/330520514_A_broadband_achromatic_polarization-insensitive_metalens_consisting_of_anisotropic_nanostructures

    [21] Lin D, Holsteen A L, Maguid E et al. Polarization-independent metasurface lens employing the Pancharatnam-Berry phase[J]. Optics Express, 26, 24835-24842(2018). http://www.osapublishing.org/oe/abstract.cfm?uri=oe-26-19-24835

    [22] Zhang X H, Li X, Jin J J et al. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes[J]. Nanoscale, 10, 9304-9310(2018). http://www.ncbi.nlm.nih.gov/pubmed/29737334

    [23] Khorasaninejad M, Shi Z, Zhu A Y et al. Achromatic metalens over 60nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 17, 1819-1824(2017).

    [24] Shrestha S, Overvig A C, Lu M et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 7, 85(2018).

    [25] Wang E L, Shi L N, Niu J B et al. Multichannel spatially nonhomogeneous focused vector vortex beams for quantum experiments[J]. Advanced Optical Materials, 7, 1801415(2019). http://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.201801415

    [26] Wang E L, Niu J B, Liang Y H et al. Complete control of multichannel, angle-multiplexed, and arbitrary spatially varying polarization fields[J]. Advanced Optical Materials, 8, 1901674(2020). http://onlinelibrary.wiley.com/doi/10.1002/adom.201901674

    [27] Liang Y Y, Wei Z C, Guo J P et al. Metalenses based on symmetric slab waveguide and c-TiO2: efficient polarization-insensitive focusing at visible wavelengths[J]. Nanomaterials, 8, 699(2018). http://www.researchgate.net/publication/327509605_Metalenses_Based_on_Symmetric_Slab_Waveguide_and_c-TiO2_Efficient_Polarization-Insensitive_Focusing_at_Visible_Wavelengths

    [28] Fan Q B, Liu M Z, Yang C et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging[J]. Applied Physics Letters, 113, 201104(2018). http://www.researchgate.net/publication/328948411_A_high_numerical_aperture_polarization-insensitive_metalens_for_long-wavelength_infrared_imaging

    [29] Ozer A, Yilmaz N, Kocer H et al. Polarization-insensitive beam splitters using all-dielectric phase gradient metasurfaces at visible wavelengths[J]. Optics Letters, 43, 4350-4353(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=35d9d0cc1e9f9df2903cfe34d241f1de

    [30] Luo J, Xu P, Sun T T et al. Tunable beam splitting and negative refraction in heterostructure with metamaterial[J]. Applied Physics A, 104, 1137-1142(2011). http://link.springer.com/article/10.1007/s00339-011-6389-x

    [31] Khorasaninejad M, Zhu A Y, Roques-Carmes C et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 16, 7229-7234(2016). http://www.ncbi.nlm.nih.gov/pubmed/27791380

    [32] Ding F, Yang Y Q, Deshpande R A et al. A review of gap-surface plasmon metasurfaces: fundamentals and applications[J]. Nanophotonics, 7, 1129-1156(2018). http://www.degruyter.com/view/j/nanoph.ahead-of-print/nanoph-2017-0125/nanoph-2017-0125.xml

    Yu Liang, Yuanyuan Xu, Yang Zou, Shuangshuang Xue, Jingrong Liao, Wenyan Pan, Yawei Wang. Design of Achromatic Polarization-Insensitive Metalens[J]. Chinese Journal of Lasers, 2021, 48(3): 0303001
    Download Citation