• Chinese Journal of Lasers
  • Vol. 50, Issue 6, 0606003 (2023)
Shuai Gu1, Pengcheng Pi2, Zhenggang Lian2、*, Xin Wang1, Xinzhi Sheng1, and Shuqin Lou1、**
Author Affiliations
  • 1Beijing Key Laboratory of Communication and Information System, School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
  • 2Yangtze Optical Electronic Company, Wuhan 430074, Hubei, China
  • show less
    DOI: 10.3788/CJL220966 Cite this Article Set citation alerts
    Shuai Gu, Pengcheng Pi, Zhenggang Lian, Xin Wang, Xinzhi Sheng, Shuqin Lou. Research on Bending Characteristics of Hollow-Core Micro-Structured Fibers for Development of Fiber Optic Gyroscopes[J]. Chinese Journal of Lasers, 2023, 50(6): 0606003 Copy Citation Text show less
    References

    [1] Michieletto M, Lyngsø J K, Jakobsen C et al. Hollow-core fibers for high power pulse delivery[J]. Optics Express, 24, 7103-7119(2016).

    [2] Beaudou B, Gerôme F, Wang Y Y et al. Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber[J]. Optics Letters, 37, 1430-1432(2012).

    [3] Mousavi S A, Mulvad H C H, Wheeler N V et al. Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers[J]. Optics Express, 26, 8866-8882(2018).

    [4] Wang X, Lou S Q, Lian Z G et al. Experimental research on the dispersion property of hollow core photonic bandgap fiber[J]. Acta Physica Sinica, 65, 194212(2016).

    [5] Feng L S, Jiao H C, Li H et al. Hollow core photonic crystal fiber resonant optical gyro technology[C](2016).

    [6] Xu X B, Wang X Y, Gao F Y et al. Photonic crystal fiber-optic gyroscope technology and its first space experiment[J]. Journal of Chinese Inertial Technology, 29, 1-7(2021).

    [7] Suo X X, Yu H C, Li J et al. Transmissive resonant fiber-optic gyroscope employing Kagome hollow-core photonic crystal fiber resonator[J]. Optics Letters, 45, 2227-2230(2020).

    [8] Knight J C, Russell P S J. Applied optics: new ways to guide light[J]. Science, 296, 276-277(2002).

    [9] Benabid F, Knight J C, Antonopoulos G et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 298, 399-402(2002).

    [10] Knight J C. Photonic crystal fibres[J]. Nature, 424, 847-851(2003).

    [11] Litchinitser N M, Abeeluck A K, Headley C et al. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 27, 1592-1594(2002).

    [12] Sakr H, Bradley T D, Jasion G T et al. Hollow core NANFs with five nested tubes and record low loss at 850, 1060, 1300 and 1625 nm[C](2021).

    [13] Poletti F. Nested antiresonant nodeless hollow core fiber[J]. Optics Express, 22, 23807-23828(2014).

    [14] Carter R M, Yu F, Wadsworth W J et al. Measurement of resonant bend loss in anti-resonant hollow core optical fiber[J]. Optics Express, 25, 20612-20621(2017).

    [15] Gu S, Wang X, Yan S B et al. Low bending loss single-mode hollow-core anti-resonant fiber with multi-size tubes[C], F4C.5(2021).

    [16] Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: technology and applications[J]. Nanophotonics, 2, 315-340(2013).

    [17] Amezcua-Correa R, Gèrôme F, Leon-Saval S G et al. Control of surface modes in low loss hollow-core photonic bandgap fibers[J]. Optics Express, 16, 1142-1149(2008).

    [18] Uebel P, Günendi M C, Frosz M H et al. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes[J]. Optics Letters, 41, 1961-1964(2016).

    [19] Petermann K, Kuhne R. Upper and lower limits for the microbending loss in arbitrary single-mode fibers[J]. Journal of Lightwave Technology, 4, 2-7(1986).

    [20] Roberts P J, Couny F, Sabert H et al. Ultimate low loss of hollow-core photonic crystal fibres[J]. Optics Express, 13, 236-244(2005).

    [21] Fokoua E N, Sandoghchi S R, Chen Y et al. Accurate modelling of fabricated hollow-core photonic bandgap fibers[J]. Optics Express, 23, 23117-23132(2015).

    [22] Roberts P J, Williams D P, Mangan B J et al. Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround[J]. Optics Express, 13, 8277-8285(2005).

    [23] Heiblum M, Harris J. Analysis of curved optical waveguides by conformal transformation[J]. IEEE Journal of Quantum Electronics, 11, 75-83(1975).

    [24] Frosz M H, Roth P, Günendi M C et al. Analytical formulation for the bend loss in single-ring hollow-core photonic crystal fibers[J]. Photonics Research, 5, 88-91(2017).

    [25] Fokoua E N, Richardson D J, Poletti F. Impact of structural distortions on the performance of hollow-core photonic bandgap fibers[J]. Optics Express, 22, 2735-44(2014).

    [26] Li H Z, Qian W W, Liu L et al. Analysis and optimization of angle random walk of resonant fiber optic gyroscope[J]. Chinese Journal of Lasers, 48, 0901002(2021).

    [27] Lei M, Yu H Y, Fang Y et al. Out-of-lock frequency-tracking control of resonant fiber-optic gyro[J]. Chinese Journal of Lasers, 47, 0106002(2020).

    Shuai Gu, Pengcheng Pi, Zhenggang Lian, Xin Wang, Xinzhi Sheng, Shuqin Lou. Research on Bending Characteristics of Hollow-Core Micro-Structured Fibers for Development of Fiber Optic Gyroscopes[J]. Chinese Journal of Lasers, 2023, 50(6): 0606003
    Download Citation