[1] DUNN B, KAMATH H, TARASCON J-M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(18): 6058.
[2] SONG Z, ZHOU H. Towards Stainable and vrsatile energy storage devices: An overview of organic electrode materials[J]. Energy Environ Sci, 2013, 6(8): 2280.
[3] LIU J, ZHANG J-G, YANG Z, et al. Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid[J]. Adv Funct Mater, 2013, 23(8): 929-946.
[4] LEE W, KIM J, YUN S, et al. Multiscale factors in designing alkali-ion (Li, Na, and K) transition metal inorganic compounds for next-generation rechargeable batteries[J]. Energy Environ Sci, 2020, 13(12): 4406-4449.
[5] NISHI Y. Lithium ion secondary batteries: Past 10 years and the future[J]. J Power Sources, 2001, 100(1): 101-106.
[6] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. J Am Chem Soc, 2013, 135(4): 1167-1176.
[7] TARASCON J M. Is lithium the new gold?[J]. Nat Chem, 2010, 2(6): 510.
[8] TARASCON J M. Key challenges in future Li-battery research[J]. Philos Trans Royal Soc A, 2010, 368(1923): 3227-3241.
[11] PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy Environ Sci, 2012, 5(3): 5884-5901.
[12] PAN H, HU Y-S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy Environ Sci, 2013, 6(8): 2338-2360.
[13] NAYAK P K, YANG L, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angew Chem Int Ed, 2018, 57(1): 102-120.
[14] YU L, WANG L P, LIAO H, et al. Understanding fundamentals and reaction mechanisms of electrode materials for Na-ion batteries[J]. Small, 2018, 14(16): 1703338.
[15] KIM S-W, SEO D-H, MA X, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Adv Eng Mater, 2012, 2(7): 710-721.
[16] SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Adv Funct Mater, 2013, 23(8): 947-958.
[18] GUO S, LI Q, LIU P, et al. Environmentally stable interface of layered oxide cathodes for sodium-ion batteries[J]. Nat Commun, 2017, 8(1): 135.
[19] GUO S, YU H, LIU P, et al. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2[J]. Energy Environ Sci, 2015, 8(4): 1237-1244.
[20] XU J, LEE D H, MENG Y S. Recent advances in sodium intercalation positive electrode materials for sodium ion batteries[J]. Funct Mater Lett, 2013, 6(1): 1330001.
[21] ZHAO C, DING F, LU Y, et al. High-entropy layered oxide cathodes for sodium-ion batteries[J]. Angew Chem Int Ed, 2020, 59(1): 264-269.
[22] LI Y, YANG Z, XU S, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries[J]. Adv Sci, 2015, 2(6): 1500031.
[23] WANG P-F, YOU Y, YIN Y-X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Adv Eng Mater, 2018, 8(8): 1701912.
[24] XIAO Y, ABBASI N M, ZHU Y F, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries[J]. Adv Funct Mater, 2020, 30(30): 2001334.
[25] KUBOTA K, YABUUCHI N, YOSHIDA H, et al. Layered oxides as positive electrode materials for Na-ion batteries[J]. MRS Bull, 2014, 39(5): 416-422.
[26] KUBOTA K, KOMABA S. Review-Practical issues and future perspective for Na-ion batteries[J]. J Electrochem Soc, 2015, 162(14): A2538-A2550.
[27] BORDET-LE GUENNE L, DENIARD P, BIENSAN P, et al. Structural study of two layered phases in the NaxMnyO2 system. Electrochemical behavior of their lithium substituted derivatives[J]. J Mater Chem, 2000, 10(9): 2201-2206.
[28] DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(1-4): 81-85.
[29] HAN M H, GONZALO E, SINGH G, et al. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries[J]. Energy Environ Sci, 2015, 8(1): 81-102.
[30] ZANDBERGEN H W, FOO M, XU Q, et al. Sodium ion ordering in NaxCoO2: Electron diffraction study[J]. Phys Rev B, 2004, 70(2): 024101.
[31] HINUMA Y, MENG Y S, CEDER G. Temperature-concentration phase diagram of P2-NaxCoO2 from first-principles calculations[J]. Phys Rev B, 2008, 77(22): 224111.
[32] LU Z, DAHN J R. In situ X-ray diffraction study of P2 Na2/3[Ni1/3Mn2/3]O2[J]. Electrochem Soc, 2001 148(11): A1225.
[33] ZHENG C, RADHAKRISHNAN B, CHU I-H, et al. Effects of transition-metal mixing on Na ordering and kinetics in layered P2 oxides[J]. Phys Rev A, 2017, 7(6): 064003.
[34] BERTHELOT R, CARLIER D, DELMAS C. Electrochemical investigation of the P2-NaxCoO2 phase diagram[J]. Nat Mater, 2011, 10(1): 74-80.
[35] GUIGNARD M, DIDIER C, DARRIET J, et al. P2-NaxVO2 system as electrodes for batteries and electron-correlated materials[J]. Nat Mater, 2013, 12(1): 74-80.
[36] WU D, LI X, XU B, et al. NaTiO2: A layered anode material for sodium-ion batteries[J]. Energy Environ Sci, 2015, 8(1): 195-202.
[37] LEE D H, XU J, MENG Y S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability[J]. Phys Chem Chem Phys, 2013, 15(9): 3304-3312.
[38] KANG S M, PARK J H, JIN A, et al. Na+/vacancy disordered P2-Na0.67Co1-xTixO2: High-energy and high-power cathode materials for sodium ion batteries[J]. ACS Appl Mater Interfaces, 2018, 10(4): 3562-3570.
[40] LIU Y, WANG C, ZHAO S, et al. Mitigation of Jahn-Teller distortion and Na+/vacancy ordering in a distorted manganese oxide cathode material by Li substitution[J]. Chem Sci, 2021, 12(3): 1062-1067.
[41] WANG P-F, YAO H-R, LIU X-Y. Na+/vacancy disordering promises high-rate Na-ion batteries[J]. Sci Adv, 2018, 4(3): eaar6018.
[42] GUTIERREZ A, DOSE W M, BORKIEWICZ O, et al. On disrupting the Na+-ion/vacancy ordering in P2-type sodium-manganese-nickel oxide cathodes for Na+-ion batteries[J]. J Phys Chem C, 2018, 122(41): 23251-23260.
[43] GOODENOUGH J B. Theory of the role of covalence in the perovskite-type manganites[La,M(II)]MnO3[J]. Phys Rev, 1955, 100(2): 564-573.
[44] MURAKAMI Y, KAWADA H, KAWATA H, et al. Direct observation of charge and orbital ordering in La0.5Sr1.5MnO4[J]. Phys Rev Lett, 1998, 80(9): 1932-1935.
[45] ROGER M, MORRIS D J, TENNANT D A, et al. Patterning of sodium ions and the control of electrons in sodium cobaltate[J]. Nature, 2007, 445(7128): 631-634.
[46] HUANG Q, FOO M L, LYNN J W, et al. Low temperature phase transitions and crystal structure of Na0.5CoO2[J]. J Phys Condens Matter, 2004, 16(32): 5803-5814.
[47] LI X, MA X, SU D, et al. Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2[J]. Nat Mater, 2014, 13(6): 586-592.
[48] CARLIER D, CHENG J H, BERTHELOT R, et al. The P2-Na2/3Co2/3Mn1/3O2 phase: Structure, physical properties and electrochemical behavior as positive electrode in sodium battery[J]. Dalton Trans, 2011, 40(36): 9306-9312.
[49] BECK F R, CHENG Y Q, BI Z, et al. Neutron diffraction and electrochemical studies of Na0.79CoO2 and Na0.79Co0.7Mn0.3O2 cathodes for sodium-ion batteries[J]. J Electrochem Soc, 2014, 161(6): A961-A967.
[50] WANG X, TAMARU M, OKUBO M, et al. Electrode Properties of P2-Na2/3MnyCo1-yO2 as cathode materials for sodium-ion batteries[J]. J Phys Chem C, 2013, 117(30): 15545-15551.
[51] WANG Q C, HU E, PAN Y, et al. Utilizing Co2+/Co3+ redox couple in P2-layered Na0.66Co0.22Mn0.44Ti0.34O2 cathode for sodium-ion batteries[J]. Adv Sci, 2017, 4(11): 1700219.
[52] YUAN D, HE W, PEI F, et al. Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries[J]. J Mater Chem, 2013, 1(12): 3895-3899.
[53] LU Z, DONABERGER R A, DAHN J R. Superlattice ordering of Mn, Ni, and Co in layered alkali transition metal oxides with P2, P3, and O3 Structures[J]. Chem Mater, 2000, 12(12): 3583-3590.
[54] LU Z, DAHN J R. Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3-xMn2/3]O2[J]. Chem Mater 2001, 13(4): 1252-1257.
[55] PAULSEN J M, DONABERGER R A, DAHN J R. Layered T2-, O6-, O2-, and P2-Type A2/3[M′2+1/3M4+2/3]O2 bronzes, A=Li, Na; M′=Ni, Mg; M= Mn, Ti[J]. Chem Mater, 1999, 12(8): 2257-2267.
[56] YABUUCHI N, HARA R, KUBOTA K, et al. A new electrode material for rechargeable sodium batteries: P2-type Na2/3 [Mg0.28Mn0.72]O2 with anomalously high reversible capacity[J]. J Mater Chem A, 2014, 2(40): 16851-16855.
[57] YABUUCHI N, HARA R, KAJIYAMA M, et al. New O2/P2-type Li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries[J]. Adv Eng Mater, 2014, 4(13): 1301453.
[58] WANG P F, WENG M, XIAO Y, et al. An ordered Ni6-ring superstructure enables a highly stable sodium oxide cathode[J]. Adv Mater, 2019, 31(43): e1903483.
[59] GUPTA A, BUDDIE MULLINS C, GOODENOUGH J B. Na2Ni2TeO6 : Evaluation as a cathode for sodium battery[J]. J Power Sources, 2013, 243: 817-821.
[60] YUAN D, LIANG X, WU L, et al. A honeycomb-layered Na3Ni2SbO6: A high-rate and cycle-stable cathode for sodium-ion batteries[J]. Adv Mater, 2014, 26(36): 6301-6306.
[61] WANG Y, XIAO R, HU Y S, et al. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries[J]. Nat Commun, 2015, 6: 6954.
[62] TANG K, HUANG Y, XIE X, et al. Electrochemical performance and structural stability of air-stable Na0.67Ni0.33Mn0.67-xTixO2 cathode materials for high-performance sodium-ion batteries[J]. Chem, Eng J, 2020, 399: 125725.
[63] ZHAO C, YAO Z, WANG J, et al. Ti substitution facilitating oxygen oxidation in Na2/3Mg1/3Ti1/6Mn1/2O2 cathode[J]. Chem, 2019, 5(11): 2913-2925.
[64] XU J, LEE D H, CLéMENT R J, et al. Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1-y-z]O2 (0<x, y, z<1) intercalation cathode materials for high-energy Na-ion batteries[J]. Chem Mater, 2014, 26(2): 1260-1269.
[65] ZHENG L, LI J, OBROVAC M N. Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3-xCuxMn2/3O2 in sodium cells[J]. Chem Mater, 2017, 29(4): 1623-1631.
[66] SINGH G, TAPIA-RUIZ N, LOPEZ DEL AMO J M, et al. High voltage Mg-doped Na0.67Ni0.3-xMgxMn0.7O2(x=0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability[J]. Chem Mater, 2016, 28(14): 5087-5094.
[67] WU X, GUO J, WANG D, et al. P2-type Na0.66Ni0.33-xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries[J]. J Power Sources, 2015, 281: 18-26.
[68] KANG W, YU D Y, LEE P K, et al. P2-type NaxCu0.15Ni0.20Mn0.65O2 cathodes with high voltage for high-power and long-life sodium-ion batteries[J]. ACS Appl Mater Interfaces, 2016, 8(46): 31661-31668.