• Advanced Photonics Nexus
  • Vol. 4, Issue 3, 036014 (2025)
Dan Zhao1, Fei Fan1,2,*, Hao Wang1, Pengxuan Li1..., Zhen Xu3, Jining Li3,*, Yunyun Ji1 and Shengjiang Chang2,*|Show fewer author(s)
Author Affiliations
  • 1Nankai University, Institute of Modern Optics, Tianjin, China
  • 2Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, China
  • 3Tianjin University, School of Precision Instrument and Optoelectronics Engineering, Institute of Laser and Optoelectronics, Tianjin, China
  • show less
    DOI: 10.1117/1.APN.4.3.036014 Cite this Article Set citation alerts
    Dan Zhao, Fei Fan, Hao Wang, Pengxuan Li, Zhen Xu, Jining Li, Yunyun Ji, Shengjiang Chang, "Dynamic terahertz multi-channel beam steering with dual-frequency multiplexing based on magneto-optical metasurfaces," Adv. Photon. Nexus 4, 036014 (2025) Copy Citation Text show less
    References

    [1] G. Deng et al. High-sensitivity terahertz sensor for liquid medium detection using dual-layer metasurfaces. IEEE Trans. THz. Sci. Technol., 14, 57-63(2024). https://doi.org/10.1109/TTHZ.2023.3318794

    [2] B. Chen et al. Directional terahertz holography with thermally active Janus metasurface. Light Sci. Appl., 12, 136(2023). https://doi.org/10.1038/s41377-023-01177-4

    [3] Y. Takida et al. Security screening system based on terahertz-wave spectroscopic gas detection. Opt. Express, 29, 2529-2537(2021). https://doi.org/10.1364/OE.413201

    [4] A. Kumar et al. Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication. Nat. Commun., 13, 5404(2022). https://doi.org/10.1038/s41467-022-32909-6

    [5] M. Banafaa et al. 6G mobile communication technology: requirements, targets, applications, challenges, advantages, and opportunities. Alex. Eng. J., 64, 245-274(2023). https://doi.org/10.1016/j.aej.2022.08.017

    [6] W. Wang et al. On-chip topological beamformer for multi-link terahertz 6G to XG wireless. Nature, 632, 522-527(2024). https://doi.org/10.1038/s41586-024-07759-5

    [7] C. Zheng et al. All-dielectric trifunctional metasurface capable of independent amplitude and phase modulation. Light Sci. Appl., 16, 2200051(2022). https://doi.org/10.1002/lpor.202200051

    [8] L. Bao et al. Full-space manipulations of electromagnetic wavefronts at two frequencies by encoding both amplitude and phase of metasurface. Adv. Mater. Technol., 6, 2001032(2021). https://doi.org/10.1002/admt.202001032

    [9] S. Abdollahramezani et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat. Commun., 13, 1696(2022). https://doi.org/10.1038/s41467-022-29374-6

    [10] C. Zheng et al. Terahertz metasurface polarization detection employing vortex pattern recognition. Photonics Res., 11, 2256-2263(2023). https://doi.org/10.1364/PRJ.506746

    [11] Z. Xu et al. Photo-excited metasurface for tunable terahertz reflective circular polarization conversion and anomalous beam deflection at two frequencies independently. Nanomaterials, 13, 1846(2023). https://doi.org/10.3390/nano13121846

    [12] X. Jiang et al. An ultrathin terahertz lens with axial long focal depth based on metasurfaces. Opt. Express, 21, 30030-30038(2013). https://doi.org/10.1364/OE.21.030030

    [13] J. Guo et al. Reconfigurable terahertz metasurface pure phase holograms. Adv. Opt. Mater., 7, 1801696(2019). https://doi.org/10.1002/adom.201801696

    [14] B. Liu et al. Multifunctional vortex beam generation by a dynamic reflective metasurface. Adv. Opt. Mater., 9, 2001689(2021). https://doi.org/10.1002/adom.202001689

    [15] H. Xu et al. Terahertz single/dual beam scanning with tunable field of view by cascaded metasurfaces. APL Photonics, 9, 106108(2024). https://doi.org/10.1063/5.0233841

    [16] X. Zang et al. Metasurfaces for manipulating terahertz waves. Light: Adv. Manuf., 2, 10(2021). https://doi.org/10.37188/lam.2021.010

    [17] G. Zhang et al. Manipulation of sub-terahertz waves using digital coding metasurfaces based on liquid crystals. Opt. Express, 31, 9428-9436(2023). https://doi.org/10.1364/OE.486146

    [18] S. Xu et al. Active control of terahertz quasi-BIC and asymmetric transmission in a liquid-crystal-integrated metasurface. Photonics Res., 12, 2207-2213(2024). https://doi.org/10.1364/PRJ.531952

    [19] R. Nie et al. Vanadium dioxide-based terahertz metasurfaces for manipulating wavefronts with switchable polarization. Opt. Laser Technol., 159, 109010(2023). https://doi.org/10.1016/j.optlastec.2022.109010

    [20] X. Chen et al. Reconfigurable and nonvolatile terahertz metadevices based on a phase-change material. ACS Photonics, 9, 1638-1646(2022). https://doi.org/10.1021/acsphotonics.1c01977

    [21] B. Sensale-Rodriguez et al. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun., 3, 780(2012). https://doi.org/10.1038/ncomms1787

    [22] J. Zhao et al. All-dielectric InSb metasurface for broadband and high-efficient thermal tunable terahertz reflective linear-polarization conversion. Opt. Commun., 536, 129372(2023). https://doi.org/10.1016/j.optcom.2023.129372

    [23] A. Christofi et al. Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces. Opt. Lett., 43, 1838-1841(2018). https://doi.org/10.1364/OL.43.001838

    [24] J. Qin et al. Switching the optical chirality in magnetoplasmonic metasurfaces using applied magnetic fields. ACS Nano, 14, 2808-2816(2020). https://doi.org/10.1021/acsnano.9b05062

    [25] Z. Zhou et al. Enhanced polarization conversion and giant Faraday rotation in patterned terahertz graphene metamaterials with combined electrical and magnetic tuning. J. Phys. D, 56, 365104(2023). https://doi.org/10.1088/1361-6463/acda45

    [26] O. Trépanier et al. Magneto-optical Kerr effect in Weyl semimetals with broken inversion and time-reversal symmetries. Phys. Rev. B, 106, 125104(2022). https://doi.org/10.1103/PhysRevB.106.125104

    [27] B. Briat et al. Applications of magnetic circular dichroism and optical rotatory dispersion measurements. Nature, 217, 918-922(1968). https://doi.org/10.1038/217918a0

    [28] J. Chochol et al. Magneto-optical properties of InSb for terahertz applications. AIP Adv., 6, 115021(2016). https://doi.org/10.1063/1.4968178

    [29] T. Otsuji et al. Active graphene plasmonics for terahertz device applications. J. Phys. D, 47, 094006(2014). https://doi.org/10.1088/0022-3727/47/9/094006

    [30] K. Bi et al. Ferrite based metamaterials with thermo-tunable negative refractive index. Appl. Phys. Lett., 103, 131915(2013). https://doi.org/10.1063/1.4823598

    [31] M. Shalaby et al. A magnetic non-reciprocal isolator for broadband terahertz operation. Nat. Commun., 4, 1558(2013). https://doi.org/10.1038/ncomms2572

    [32] T. Tang et al. Magneto-optical modulation of photonic spin hall effect of graphene in terahertz region. Adv. Opt. Mater., 6, 1701212(2018). https://doi.org/10.1002/adom.201701212

    [33] S. Yuan et al. On-chip terahertz isolator with ultrahigh isolation ratios. Nat. Commun., 12, 5570(2021). https://doi.org/10.1038/s41467-021-25881-0

    [34] X. Zhang et al. Wafer-level substrate-free YIG single crystal film for a broadband tunable terahertz isolator. Photonics Res., 12, 505-513(2024). https://doi.org/10.1364/PRJ.509876

    [35] B. Xiong et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science, 379, 294-299(2023). https://doi.org/10.1126/science.ade5140

    [36] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011). https://doi.org/10.1126/science.1210713

    [37] Y. Liu et al. Magnon-phonon relaxation in yttrium iron garnet from first principles. Phys. Rev. B, 96, 174416(2017). https://doi.org/10.1103/PhysRevB.96.174416

    [38] R. O. Cunha et al. Controlling the relaxation of propagating spin waves in yttrium iron garnet/Pt bilayers with thermal gradients. Phys. Rev. B, 87, 184401(2013). https://doi.org/10.1103/PhysRevB.87.184401

    Dan Zhao, Fei Fan, Hao Wang, Pengxuan Li, Zhen Xu, Jining Li, Yunyun Ji, Shengjiang Chang, "Dynamic terahertz multi-channel beam steering with dual-frequency multiplexing based on magneto-optical metasurfaces," Adv. Photon. Nexus 4, 036014 (2025)
    Download Citation