• Frontiers of Optoelectronics
  • Vol. 4, Issue 2, 199 (2011)
Li LIU* and Ze ZHANG
Author Affiliations
  • College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
  • show less
    DOI: 10.1007/s12200-011-0166-5 Cite this Article
    Li LIU, Ze ZHANG. Facile solvothermal synthesis and photoconductivity of one-dimensional organic Cd(II)-Schiff-base nanoribbons[J]. Frontiers of Optoelectronics, 2011, 4(2): 199 Copy Citation Text show less
    References

    [1] Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research, 1999, 32(5): 435-445

    [2] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947-1949

    [3] ShaoMW, Shan Y Y,Wong N B, Lee S T. Silicon nanowire sensors for bioanalytical applications: glucose and hydrogen peroxide detection. Advanced Functional Materials, 2005, 15(9): 1478-1482

    [4] Shen G Z, Chen D, Chen P C, Zhou C W. Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures. ACS Nano, 2009, 3(5): 1115-1120

    [5] Liu H B, Li Y L, Xiao S Q, Gan H Y, Jiu T G, Li H M, Jiang L, Zhu D B, Yu D P, Xiang B, Chen Y F. Synthesis of organic onedimensional nanomaterials by solid-phase reaction. Journal of the American Chemical Society, 2003, 125(36): 10794-10795

    [6] Jordan B J, Ofir Y, Patra D, Caldwell S T, Kennedy A, Joubanian S, Rabani G, Cooke G, Rotello V M. Controlled self-assembly of organic nanowires and platelets using dipolar and hydrogenbonding interactions. Small, 2008, 4(11): 2074-2078

    [7] Zang L, Che Y, Moore J S. One-dimensional self-assembly of planar -conjugated molecules: adaptable building blocks for organic nanodevices. Accounts of Chemical Research, 2008, 41(12): 1596-1608

    [8] Zhao Y S, Fu H B, Peng A D, Ma Y, Xiao D B, Yao J N. Lowdimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Advanced Materials, 2008, 20(15): 2859-2876

    [9] Zhao Y S, Fu H B, Peng A D, Ma Y, Liao Q, Yao J N. Construction and optoelectronic properties of organic one-dimensional nanostructures. Accounts of Chemical Research, 2010, 43(3): 409-418

    [10] Zhang X J, Zhang X H, Zou K, Lee C S, Lee S T. Single-crystal nanoribbons, nanotubes, and nanowires from intramolecular chargetransfer organic molecules. Journal of the American Chemical Society, 2007, 129(12): 3527-3532

    [11] An B K, Lee D S, Lee J S, Park Y S, Song H S, Park S Y. Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbene derivative. Journal of the American Chemical Society, 2004, 126(33): 10232-10233

    [12] Zhao Y S, Xiao D B, Yang W S, Peng A D, Yao J N. 2,4,5-triphenylimidazole nanowires with fluorescence narrowing spectra prepared through the adsorbent-assisted physical vapor deposition method. Chemistry of Materials, 2006, 18(9): 2302-2306

    [13] Zhang C Y, Zhang X J, Zhang X H, Ou X M, Zhang W F, Jie J S, Chang J C, Lee C S, Lee S T. Facile one-step fabrication of ordered organic nanowire films. Advanced Materials, 2009, 21(41): 4172-4175

    [14] Lee J K, KohWK, ChaeWS, Kim Y R. Novel synthesis of organic nanowires and their optical properties. Chemical Communications, 2002, (2): 138-139

    [15] Wang X H, Shao M W, Shao G, Wu Z C, Wang S W. A facile route to ultra-long polyaniline nanowires and the fabrication of photoswitch. Journal of Colloid and Interface Science, 2009, 332(1): 74-77

    [16] Tang C W, VanSlyke S A. Organic electroluminscent diodes. Applied Physics Letters, 1987, 51(12): 913-915

    [17] Xiao D B, Xiao H Y, Liu L L, Li X L. Preparation of phosphorescent crystalline tris(1-phenylisoquinoline) iridium nanobelts via a recrystallization method. New Journal of Chemistry, 2010, 34(6): 1100-1103

    [18] Sano T, Nishio Y, Hamada Y, Takahashi H, Usuki T, Shibata K. Design of conjugated molecular materials for optoelectronics. Journal of Materials Chemistry, 2000, 10(1): 157-161

    [19] Yu T Z, Zhang K, Zhao Y L, Yang C H, Zhang H, Fan DW, DongW K. A new trinuclear zinc(II) complex possessing five- and sixcoordinated central ions and its photoluminescent property. Inorganic Chemistry Communications, 2007, 10(4): 401-403

    [20] Wang Y, Yang Z Y. Crystal structure of Ni(II) complex and fluorescence properties of Zn(II) complex with the Schiff base derived from diethenetriamine and PMBP. Journal of Luminescence, 2008, 128(3): 373-376

    [21] Pietrangelo A, Sih B C, Boden B N, Wang Z W, Li Q F, Chou K C, MacLachlan M J, Wolf M O. Nonlinear optical properties of Schiffbase-containing conductive polymer films electro-deposited in microgravity. Advanced Materials, 2008, 20(12): 2280-2284

    [22] Liu L, Shao M W, Wang X H. One-dimensional organic photoconductive nanoribbons built on Zn-Schiff base complex. Journal of Solid State Chemistry, 2010, 183(3): 590-594

    [23] Singer A L, Atwood D A. Five-coordinate Salen(tBu) complexes of zinc. Inorganica Chimica Acta, 1998, 277(2): 157-162

    [24] Hesse R. Indexing powder photographs of tetragonal, hexagonal and orthorhombic crystals. Acta Crystallographica, 1948, 1(4): 200-207

    [25] Tuncel M, Serin S. Synthesis and characterization of new azo-linked Schiff bases and their cobalt (II), copper (II) and nickel (II) complexes. Transition Metal Chemistry, 2006, 31(6): 805-812

    Li LIU, Ze ZHANG. Facile solvothermal synthesis and photoconductivity of one-dimensional organic Cd(II)-Schiff-base nanoribbons[J]. Frontiers of Optoelectronics, 2011, 4(2): 199
    Download Citation