• Frontiers of Optoelectronics
  • Vol. 13, Issue 3, 272 (2020)
Hangkai YING1, Yifan LIU1, Yuxi DOU1, Jibo ZHANG1, Zhenli WU1, Qi ZHANG2、3, Yi-Bing CHENG1、4, and Jie ZHONG1、*
Author Affiliations
  • 1State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • 2School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
  • 3School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
  • 4Department of Materials Science and Engineering, Monash University, VIC 3800, Australia
  • show less
    DOI: 10.1007/s12200-020-1031-1 Cite this Article
    Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Frontiers of Optoelectronics, 2020, 13(3): 272 Copy Citation Text show less
    References

    [1] Jelle B P, Breivik C. State-of-the-art building integrated photovoltaics. Energy Procedia, 2012, 20: 68–77

    [2] Dou Y, Liu Z, Wu Z, Liu Y, Li J, Leng C, Fang D, Liang G, Xiao J, Li W, Wei X, Huang F, Cheng Y B, Zhong J. Self-augmented ion blocking of sandwiched 2D/1D/2D electrode for solution processed high efficiency semitransparent perovskite solar cell. Nano Energy, 2020, 71: 104567

    [3] Tai Q, Yan F. Emerging semitransparent solar cells: materials and device design. Advanced Materials, 2017, 29(34): 1700192

    [4] Bu T, Li J, Zheng F, Chen W, Wen X, Ku Z, Peng Y, Zhong J, Cheng Y B, Huang F. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nature Communications, 2018, 9(1): 4609

    [5] Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y B, Zhong J. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy & Environmental Science, 2017, 10 (12): 2509–2515

    [6] YangWS, Park BW, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379

    [7] Bu T,Wu L, Liu X, Yang X, Zhou P, Yu X, Qin T, Shi J,Wang S, Li S, Ku Z, Peng Y, Huang F, Meng Q, Cheng Y B, Zhong J. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Advanced Energy Materials, 2017, 7(20): 1700576

    [8] NREL Chart. Best research-cell efficiencies. 2020

    [9] hang Y, Liang Y, Wang Y, Guo F, Sun L, Xu D. Planar FAPbBr3 solar cells with power conversion efficiency above 10%. ACS Energy Letters, 2018, 3(8): 1808–1814

    [10] Barrows A T, Pearson A J, Kwak C K, Dunbar A D F, Buckley A R, Lidzey D G. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014, 7(9): 2944–2950

    [11] Ye F, Chen H, Xie F, Tang W, Yin M, He J, Bi E, Wang Y, Yang X, Han L. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy& Environmental Science, 2016, 9(7): 2295–2301

    [12] Kim J H, Williams S T, Cho N, Chueh C C, Jen A K Y. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Advanced Energy Materials, 2015, 5 (4): 1401229

    [13] Deng Y, Dong Q, Bi C, Yuan Y, Huang J. Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active Layer. Advanced Energy Materials, 2016, 6 (11): 1600372

    [14] Yang M, Li Z, Reese M O, Reid O G, Kim D H, Siol S, Klein T R, Yan Y, Berry J J, van Hest M F A M, Zhu K. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy, 2017, 2(5): 17038

    [15] Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J. Surfactantcontrolled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 2018, 3(7): 560–566

    [16] Hwang K, Jung Y S, Heo Y J, Scholes F H,Watkins S E, Subbiah J, Jones D J, Kim D Y, Vak D. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Advanced Materials, 2015, 27(7): 1241–1247

    [17] Wang D, Zheng J, Wang X, Gao J, Kong W, Cheng C, Xu B. Improvement on the performance of perovskite solar cells by doctorblade coating under ambient condition with hole-transporting material optimization. Journal of Energy Chemistry, 2019, 38(1): 207–213

    [18] Deng Y, Peng E, Shao Y, Xiao Z, Dong Q, Huang J. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science, 2015, 8(5): 1544–1550

    [19] He M, Li B, Cui X, Jiang B, He Y, Chen Y, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J, Lin Z. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nature Communications, 2017, 8(1): 16045

    [20] Tang S, Deng Y, Zheng X, Bai Y, Fang Y, Dong Q,Wei H, Huang J. Composition engineering in doctor-blading of perovskite solar cells. Advanced Energy Materials, 2017, 7(18): 1700302

    [21] Ye F, Tang W, Xie F, YinM, He J,Wang Y, Chen H, Qiang Y, Yang X, Han L. Low-temperature soft-cover deposition of uniform largescale perovskite films for high-performance solar cells. Advanced Materials, 2017, 29(35): 1701440

    [22] Zuo L, Shi X, Fu W, Jen A K. Highly efficient semitransparent solar cells with selective absorption and tandem architecture. Advanced Materials, 2019, 31(36): 1901683

    [23] Liu X, Bu T, Li J, He J, Li T, Zhang J, Li W, Ku Z, Peng Y, Huang F, Cheng Y B, Zhong J. Stacking n-type layers: effective route towards stable, efficient and hysteresis-free planar perovskite solar cells. Nano Energy, 2018, 44: 34–42

    [24] Dai J, Zheng H, Zhu C, Lu J, Xu C. Comparative investigation on temperature-dependent photoluminescence of CH3NH3PbBr3 and CH(NH2)2PbBr3 microstructures. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(20): 4408– 4413

    [25] Wright A D, Verdi C, Milot R L, Eperon G E, Pérez-Osorio M A, Snaith H J, Giustino F, Johnston M B, Herz L M. Electron-phonon coupling in hybrid lead halide perovskites. Nature Communications, 2016, 7(1): 11755

    [26] Galkowski K, Mitioglu A A, Surrente A, Yang Z, Maude D K, Kossacki P, Eperon G E, Wang J T, Snaith H J, Plochocka P, Nicholas R J. Spatially resolved studies of the phases and morphology of methylammonium and formamidinium lead trihalide perovskites. Nanoscale, 2017, 9(9): 3222–3230

    [27] Bi C, Shao Y, Yuan Y, Xiao Z, Wang C, Gao Y, Huang J. Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(43): 18508–18514

    [28] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam MA,Wang H L, Mohite A D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522–525

    [29] Hanusch F C, Wiesenmayer E, Mankel E, Binek A, Angloher P, Fraunhofer C, Giesbrecht N, Feckl J M, Jaegermann W, Johrendt D, Bein T, Docampo P. Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. Journal of Physical Chemistry Letters, 2014, 5(16): 2791–2795

    [30] Gao L, Yang G. Organic-inorganic halide perovskites: from crystallization of polycrystalline films to solar cell applications. Solar RRL, 2020, 4(2): 1900200

    [31] Li Y, Ding B, Chu Q Q, Yang G J, Wang M, Li C X, Li C J. Ultrahigh open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Scientific Reports, 2017, 7(1): 46141

    [32] Yang K, Li F, Zhang J, Veeramalai C P, Guo T. All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode. Nanotechnology, 2016, 27(9): 095202

    [33] Kim H, Kim H S, Ha J, Park N G, Yoo S. Empowering semitransparent solar cells with thermal-mirror functionality. Advanced Energy Materials, 2016, 6(14): 1502466 .

    Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Frontiers of Optoelectronics, 2020, 13(3): 272
    Download Citation