• Frontiers of Optoelectronics
  • Vol. 9, Issue 2, 123 (2016)
Daojun XUE1, Shaohua YU1、*, Qi YANG1, Nan CHI2, Lan RAO3, Xiangjun XIN3, Wei LI4, Songnian FU5, Sheng CUI5, Demin LIU5, Zhuo LI6, Aijun WEN6, Chongxiu YU3, and Xinmei WANG6
Author Affiliations
  • 1State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts and Telecommunications,Wuhan 430074, China
  • 2School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • 3State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications,Beijing 100876, China
  • 4Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 5School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 6State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710126, China
  • show less
    DOI: 10.1007/s12200-016-0612-5 Cite this Article
    Daojun XUE, Shaohua YU, Qi YANG, Nan CHI, Lan RAO, Xiangjun XIN, Wei LI, Songnian FU, Sheng CUI, Demin LIU, Zhuo LI, Aijun WEN, Chongxiu YU, Xinmei WANG. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission[J]. Frontiers of Optoelectronics, 2016, 9(2): 123 Copy Citation Text show less
    References

    [1] Zhang H, Cai J X, Batshon H G, Mazurczyk M V, Sinkin O, Foursa D G, Pilipetskii A, Mohs G, Bergano N S.200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency. In: Processing of OFC 2013, Paper PDP5A.6

    [2] Yu J, Zhang J, Dong Z, Jia Z, Chien H C, Cai Y, Xiao X, Li X. Transmission of 8 _ 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs. Optics Express, 2013, 21(13): 15686–15691

    [3] Zhang J, Yu J, Chi N. Generation and transmission of 512-Gb/s quad-carrier digital super-Nyquist spectral shaped signal. Optics Express, 2013, 21(25): 31212–31217

    [4] Porto da Silva E, Carvalho L, Franciscangelis C, Diniz J, Oliveira J, Bordonalli A. Spectrally-efficient 448-Gb/s dual-carrier PDM- 16QAM channel in a 75-GHz grid. In: Processing of OFC 2013, paper JTh2A.39

    [5] Zhang J, Chien H, Dong Z, Xiao J.Transmission of 480-Gb/s dualcarrier PM-8QAM over 2550 km SMF-28 using adaptive preequalization. In: Processing of OFC 2014, paper Th4F.6

    [6] Zhou X, Nelson L, Magill P, Issac R, Zhu B, Peckham D, Borel P, Carlson K.4000 km transmission of 50 GHz spaced, 10×494.85- Gb/s hybrid 32-64QAM using cascaded equalization and trainingassisted phase recovery. In: Processing of OFC 2012, paper PDP5C.6

    [7] Cai J X, Davidson C R, Lucero A J, Zhang H, Foursa D G, Sinkin O V, PattersonW W, Pilipetskii A N, Mohs G, Bergano N S. 20 Tbit/s transmission over 6860 km with sub-Nyquist channel spacing. Journal of Lightwave Technology, 2012, 30(4): 651–657

    [8] Zhang J, Yu J, Jia Z, Chien H C. 400 G transmission of super- Nyquist-filtered signal based on single-carrier 110-GBaud PDM QPSK with 100-GHz grid. Journal of Lightwave Technology, 2014, 32(19): 3239–3246

    [9] Kuo B P P, Myslivets E, Alic N, Radic S. Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer. Journal of Lightwave Technology, 2011, 29(23): 3515–3522

    [10] Slavík R, Parmigiani F, Kakande J, Lundstr m C, Sj din M, Andrekson P A, Weerasuriya R, Sygletos S, Ellis A D, Grüner- Nielsen L, Jakobsen D, Herstr m S, Phelan R, O’Gorman J, Bogris A, Syvridis D, Dasgupta S, Petropoulos P, Richardson D J. Alloptical phase and amplitude regeneration for next-generation telecommunications system. Nature Photonics, 2010, 4(10): 690– 695

    [11] Torounidis T, Andrekson PA, Olsson B E. Fiber-optical parametric amplifier with 70 dB gain. IEEE Photonics Technology Letters, 2006, 18(10): 1194–1196

    [12] Tong Z, Lundstrom C, Andrekson PA, McKinstrie C J, Karlsson M, Blessing D J, Tipsuwannaku E, Puttnam B J, Todaand H,Gruner- Nielsen L. Towards ultrasensitive optical links enabled by lownoise phase-sensitive amplifiers. Nature Photonics, 2011, 79(10): 1038

    [13] Zhang J, Yu J, Chi N, Dong Z, Yu J, Li X, Tao L, Shao Y. Multimodulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing. Journal of Lightwave Technology, 2013, 31(7): 1073–1078

    [14] Zhang J, Huang B, Li X. Improved quadrature duobinary system performance using multi-modulus equalization. Photonic Technology Letters, 2013, 25(16): 1630–1633

    [15] Rao L, Yu C X, Shen XW, Sang X Z, Yuan J H, Zeng X F, Xin X J. Investigation on gain characteristics in non-degenerate cascaded phase sensitive parametric amplifiers. Optoelectronics Letters, 2012, 8(3): 172–175

    [16] Yuan J H, Sang X Z, Wu Q, Yu C X, Wang K R, Yan B B, Shen X W, Han Y, Zhou G Y, Semenova Y, Farrell G, Hou L T. Efficient red-shifted dispersive wave in a photonic crystal fiber for widely tunable mid-infrared wavelength generation. Laser Physics Letters, 2013, 10(4): 045405

    [17] Yuan J H, Sang X Z,Wu Q, Yu C X, Zhou G Y, Shen XW,Wang K R, Yan B B, Teng Y L, Xia C M, Han Y, Li S G, Farrell G, Hou LT. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding. Laser Physics Letters, 2013, 10(8): 085402

    [18] Yuan J H, Sang X Z, Yu C X, Han Y, Zhou G Y, Li S G, Hou L T. Highly efficient anti-Stokes signal conversion by pumping in the normal and anomalous dispersion regions in the fundamental mode of photonic crystal fiber. Journal of Lightwave Technology, 2011, 29 (19): 2920–2926

    [19] Yuan J, Zhou G, Liu H, Xia C, Sang X, Wu Q, Yu C, Wang K, Yan B, Han Y, Farrell G, Hou L. Coherent anti-Stokes Raman scattering microscopy by dispersive wave generations in a polarization maintaining photonic crystal fiber. Progress In Electromagnetics Research-PIER, 2013, 141: 659–670

    [20] Zong L, Luo F, Cui S, Cao X. Rapid and accurate chromatic dispersion measurement of fiber using asymmetric Sagnac interferometer. Optics Letters, 2011, 36(5): 660–662

    [21] Zong L, Luo F, Wang Y, Cao X. Dispersion compensation module for 100 Gbit/s optical system and beyond. Optical Fiber Technology, 2011, 17(3): 227–232

    [22] Cui S, Sun S, Li L, Ke C,Wan Z, Liu D. All-optical highly sensitive chromatic dispersion monitoring method utilizing phase-matched four-wave mixing. IEEE Photonics Technology Letters, 2011, 23 (22): 1724–1726

    [23] Cheng H, Li W, Fan Y, Zhang Z, Yu S, Yang Z. A novel fiber nonlinearity suppression method in DWDM optical fiber transmission systems with an all-optical pre-distortion module. Optics Communications, 2013, 290(1): 152–157

    [24] Yang Q, Xiao X, Li C, Luo M, He Z, Li C, Hu R, Zhang X, Yu S. 168_103 Gb/s 25-GHz-spaced C-band transmission over 2240 km SSMF with improved nonlinearity using DFT-S OFDM-8PSK modulation. In: Processing of Asia Communications and Photonics Conference 2012, PDP paper AF4C.3

    [25] Yang Q, He Z, Liu W, Yang Z, Yu S, Shieh W, Djordjevic I B. 1-Tb/ s large girth LDPC-coded coherent optical OFDM transmission over 1040-km standard single-mode fiber. In: Processing of OFC 2011, paper JThA035

    [26] Li C, Luo M, Xiao X, Li J, He Z, YangQ, YangZ,YuS.63-Tb/s (368×183.3-Gb/s) C- and L-band all-Raman transmission over 160- km SSMF using OFDM-16QAM modulation. Chinese Optics Letters, 2014, 12(4): 040601–040604

    [27] Luo M, Li C, Yang Q, He Z, Xu J, Zhang Z, Yu S. 100.3-Tb/s (375×267.27-Gb/s) C- and L-band transmission over 80-km SSMF using DFT-S OFDM 128-QAM. In: Processing of Asia Communications and Photonics Conference 2014, PDP paper AF4B.1

    [28] Luo M, Mo Q, Li X, Hu R, Qiu Y, Li C, Liu Z, Liu W, Yu H, Du W, Xu J, He Z, Yang Q, Yu S. Transmission of 200 Tb/s (375×3×178.125 Gb/s) PDM-DFTS-OFDM-32QAM super channel over 1 km FMF. Frontiers of Optoelectronics, 2015, 8(4): 394– 401

    [29] Li C, Djordjevic I B, Luo M, He Z, Liu W, Yang Q, Xiao X, Xue D, Yu S, Shieh W. Ultra long-haul transmission of a 1-Tb/s LDPCcoded DFT-S OFDM-8PSK superchannel over 12160 km. In: Processing of Asia Communications and Photonics Conference 2013, PDP Paper AF2C.2

    [30] Luo M, Zhang Z, Li C, Xu J, Zhang X, Li J, He Z, Hu R, Yang Q, Yu S. Real-time single laser based 3.2 Tb/s (32×100-Gb/s) PM-QPSK transmission using coherent detection over 2080-km SSMF. In: Processing of Asia Communications and Photonics Conference 2014, paper ATh4E.2

    [31] Li C, Zhang X, Li H, Li C, Luo M, Li Z, Xu J, Yang Q, Yu S. Experimental demonstration of 429.96-Gb/s OFDM /OQAM- 64QAM over 400-km SSMF transmission within a 50-GHz Grid. IEEE Photonics Journal, 2014, 6(4): 1–8

    [32] Zeng T, Pan Y, Luo M, Wang Y, Hu R, Yang Q, Yu S. The manipulated rotating BPSK technique compatible with conventional CMA algorithm. In: Processing of OFC 2015, paper TH2A.1

    Daojun XUE, Shaohua YU, Qi YANG, Nan CHI, Lan RAO, Xiangjun XIN, Wei LI, Songnian FU, Sheng CUI, Demin LIU, Zhuo LI, Aijun WEN, Chongxiu YU, Xinmei WANG. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission[J]. Frontiers of Optoelectronics, 2016, 9(2): 123
    Download Citation