• Acta Physica Sinica
  • Vol. 68, Issue 10, 104209-1 (2019)
Wang Zhao1、2、3, Li-Zhi Dong1、2, Ping Yang1、2, Shuai Wang1、2、*, and Bing Xu1、2
Author Affiliations
  • 1Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.7498/aps.68.20182137 Cite this Article
    Wang Zhao, Li-Zhi Dong, Ping Yang, Shuai Wang, Bing Xu. Complex exponential reconstruction algorithm accelerated by cascadic multigrid method[J]. Acta Physica Sinica, 2019, 68(10): 104209-1 Copy Citation Text show less
    The relationship between phase differences and phase.测量相位差和重建相位点的关系
    Fig. 1. The relationship between phase differences and phase.测量相位差和重建相位点的关系
    Schematic of the CMG method: (a) Structure of network layers; (b) calculation process.瀑布型多重网格法示意图 (a)网格结构; (b)CMG算法计算流程
    Fig. 2. Schematic of the CMG method: (a) Structure of network layers; (b) calculation process.瀑布型多重网格法示意图 (a)网格结构; (b)CMG算法计算流程
    Downsampling process of the CMG method: (a) Data on the fine network; (b) data on the coarse network.CMG算法降采样过程 (a)细网格上光场; (b)粗网格上光场
    Fig. 3. Downsampling process of the CMG method: (a) Data on the fine network; (b) data on the coarse network.CMG算法降采样过程 (a)细网格上光场; (b)粗网格上光场
    Interpolation process of the CMG method: (a) The relationship between grid points on coarse network and fine network; (b) the new grid point located at the center of the unit square; (c), (d) the new grid point located on the edge of the unit square.CMG算法插值过程 (a)细网格光场和粗网格光场的关系; (b)待插值数据位于正方形中心; (c), (d)待插值数据位于正方形四边上
    Fig. 4. Interpolation process of the CMG method: (a) The relationship between grid points on coarse network and fine network; (b) the new grid point located at the center of the unit square; (c), (d) the new grid point located on the edge of the unit square.CMG算法插值过程 (a)细网格光场和粗网格光场的关系; (b)待插值数据位于正方形中心; (c), (d)待插值数据位于正方形四边上
    (a)−(d) Two-dimensional distribution of Phase1, Phase2, Phase3 and Phase4; (e)−(h) wavefront reconstructed by the least-squares reconstruction algorithm; (i)−(l) wavefront reconstructed by the CER algorithm.(a)−(d) Phase1, Phase2, Phase3和Phase4二维分布; (e)−(h)最小二乘法波前复原结果; (i)−(l)复指数波前复原算法结果
    Fig. 5. (a)−(d) Two-dimensional distribution of Phase1, Phase2, Phase3 and Phase4; (e)−(h) wavefront reconstructed by the least-squares reconstruction algorithm; (i)−(l) wavefront reconstructed by the CER algorithm.(a)−(d) Phase1, Phase2, Phase3和Phase4二维分布; (e)−(h)最小二乘法波前复原结果; (i)−(l)复指数波前复原算法结果
    Wavefront residual error of the direct iteration method and the CMG method, the number of subapertures is (a) 20 × 20; (b) 40 × 40; (c) 80 × 80.直接迭代和CMG算法波前复原残差 (a)子孔径数目为20 × 20; (b)子孔径数目为40 × 40; (c)子孔径数目为80 × 80
    Fig. 6. Wavefront residual error of the direct iteration method and the CMG method, the number of subapertures is (a) 20 × 20; (b) 40 × 40; (c) 80 × 80.直接迭代和CMG算法波前复原残差 (a)子孔径数目为20 × 20; (b)子孔径数目为40 × 40; (c)子孔径数目为80 × 80
    Float point multiplications required by the CMG method and the process of the direct iteration the number of subapertures is (a) 20 × 20; (b) 40 × 40; (c) 80 × 80.CMG算法和直接迭代过程所需浮点乘运算数目(a)子孔径数目为20 × 20; (b)子孔径数目为40 × 40; (c)子孔径数目为80 × 80
    Fig. 7. Float point multiplications required by the CMG method and the process of the direct iteration the number of subapertures is (a) 20 × 20; (b) 40 × 40; (c) 80 × 80.CMG算法和直接迭代过程所需浮点乘运算数目(a)子孔径数目为20 × 20; (b)子孔径数目为40 × 40; (c)子孔径数目为80 × 80
    Wavefront residual statistics of the CMG method and SOR method.CMG算法和SOR算法波前复原残差统计结果
    Fig. 8. Wavefront residual statistics of the CMG method and SOR method.CMG算法和SOR算法波前复原残差统计结果
    Matching relation between actuators of deformable mirror and subapertures of Shack-Hartmann sensor.变形镜驱动器和哈特曼波前传感器子孔径匹配关系
    Fig. 9. Matching relation between actuators of deformable mirror and subapertures of Shack-Hartmann sensor.变形镜驱动器和哈特曼波前传感器子孔径匹配关系
    Far field intensity and Strehl ratio of laser beam before and after corrected by the adaptive optics system.不同Rytov方差时, 自适应光学系统校正前后远场光强分布及其峰值Strehl比
    Fig. 10. Far field intensity and Strehl ratio of laser beam before and after corrected by the adaptive optics system.不同Rytov方差时, 自适应光学系统校正前后远场光强分布及其峰值Strehl比
    Strehl ratio of laser beam after corrected by the adaptive optics system in different Rytov number.不同Rytov方差时, 自适应光学系统校正光束Strehl比
    Fig. 11. Strehl ratio of laser beam after corrected by the adaptive optics system in different Rytov number.不同Rytov方差时, 自适应光学系统校正光束Strehl比
    子孔径数目20 × 20子孔径数目40 × 40子孔径数目80 × 80
    直接迭代CMG算法直接迭代CMG算法直接迭代CMG算法
    Phase14.2610.08167.390.27114000.920
    Phase25.1120.11977.610.31921340.852
    Phase34.1840.10354.560.51914241.339
    Phase41.8910.09718.430.494370.81.308
    Table 1. Time required by the direct iteration and CMG method (in s).
    Wang Zhao, Li-Zhi Dong, Ping Yang, Shuai Wang, Bing Xu. Complex exponential reconstruction algorithm accelerated by cascadic multigrid method[J]. Acta Physica Sinica, 2019, 68(10): 104209-1
    Download Citation