• Electro-Optic Technology Application
  • Vol. 37, Issue 4, 64 (2022)
WANG Xin1, HOU Xiaokai1, LU Feifei1, BAI Jiandong1,2..., HE Jun1,3 and WANG Junmin1,3|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    WANG Xin, HOU Xiaokai, LU Feifei, BAI Jiandong, HE Jun, WANG Junmin. High-stability 2-Watt-output kHz-linewidth 319 nm-ultraviolet Continuous-wave Laser System (Invited)[J]. Electro-Optic Technology Application, 2022, 37(4): 64 Copy Citation Text show less
    References

    [1] SAFFMAN M, WALKER T G, M?LMER K. Quantum information with Rydberg atoms[J]. Rev Mod Phys, 2010(82): 2313-2363.

    [2] ADAMS CS, PRITCHARD JD, SHAFFER JP. Rydberg atom quantum technologies[J]. J Phys B: At Mol Opt Phys, 2020(53): 012002.

    [3] BROWAEYS A, LAHAYE T. Many-body physics with individually controlled Rydberg atoms[J]. Nature Phys, 2020(16): 132-142.

    [4] ZASEDATELEV AV, BARANIKOV AV, SANNIKOV D, et al. Single-photon nonlinearity at room temperature[J]. Nature, 2021(597): 493-497.

    [5] MORENO-CARDONER M, GONCALVES D, CHANG D E. Quantum nonlinear optics based on two-dimensional Rydberg atom arrays[J]. Phys Rev Lett, 2021(127): 263602.

    [6] FERREIRA-CAO M, GAVRYUSEV V, FRANZ T, et al. Depletion imaging of Rydberg atoms in cold atomic gases[J]. J Phys B: At Mol Opt Phys, 2020(53): 084004.

    [7] GROSS C, VOGT T, LI W. Ion imaging via long-range interaction with Rydberg atoms[J]. Phys Rev Lett, 2020(124): 053401.

    [8] TONG D, FAROOQI S M, STANOJEVIC J, et al. Local blockade of Rydberg excitation in an ultracold gas[J]. Phys Rev Lett, 2004(93): 063001.

    [9] THOUMANY P, H?nsch T, STANIA G, et al. Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency-doubled dye laser[J]. Opt Lett, 2009(34): 1621-1623.

    [10] ARIAS A, LOCHEAD G, WINTERMANTEL T M, et al. Realization of a Rydberg-dressed ramsey interferometer and electrometer[J], Phys Rev Lett, 2019(122): 053601.

    [11] VASILYEV S, NEVSKY A, ERNSTING I, et al. Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be+ ions[J]. Appl Phys B, 2011(103): 27-33.

    [12] RENGELINK R J, NOTERMANS R P M J W, VASSEN W, et al. A simple 2 W continuous-wave laser system for trapping ultracold metastable helium atoms at the 319.8 nm magic wavelength[J]. Appl Phys B, 2016(122): 122.

    [13] WILSON A C,OSPELKAUS C,VANDEVENDER A P, et al. A 750 mW,continuous-wave,solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions[J]. Appl Phys B, 2011(105): 741-748.

    [14] HANKIN A M, JAU Y Y, PARAZZOLI L P, et al. Two-atom Rydberg blockade using direct 6S to nP excitation[J]. Phys Rev A, 2014(89): 033416.

    [15] LI B, LI M, JIANG X, et al. Optical spectroscopy of nP Rydberg states of 87Rb atoms with a 297 nm ultraviolet laser[J]. Phys Rev A, 2019(99): 042502.

    [16] WANG J Y,BAI J D,HE J,et al. Realization and characterization of single-frequency tunable 637.2 nm high-power laser[J]. Opt Commun, 2016(370): 150-155.

    [18] WANG J Y, BAI J D,HE J,et al. Development and characterization of a 2.2 W narrow-linewidth 318.6 nm ultraviolet laser[J]. J Opt Soc Am B, 2016(33): 2020-2025.

    [20] BAI J D, LIU S, WANG J Y, et al. Single-photon Rydberg excitation and trap-loss spectroscopy of cold cesium atoms in a magneto-optical trap by using of a 319 nm ultraviolet laser system[J]. IEEE J Sel Top Quant Electr, 2020(26): 1600106.

    CLP Journals

    [1] WEI Yu, ZHANG Aiguo, QIAO Shan, LIU Zhiming, SHENG Liwen, HUANG Lin. Output Characteristics of External Cavity Tunable Semiconductor Lasers (Invited)[J]. Electro-Optic Technology Application, 2023, 38(5): 1

    WANG Xin, HOU Xiaokai, LU Feifei, BAI Jiandong, HE Jun, WANG Junmin. High-stability 2-Watt-output kHz-linewidth 319 nm-ultraviolet Continuous-wave Laser System (Invited)[J]. Electro-Optic Technology Application, 2022, 37(4): 64
    Download Citation