• Frontiers of Optoelectronics
  • Vol. 5, Issue 4, 371 (2012)
Dehua XIONG and Wei CHEN*
Author Affiliations
  • Michael Gratzel Centre for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-012-0283-9 Cite this Article
    Dehua XIONG, Wei CHEN. Recent progress on tandem structured dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2012, 5(4): 371 Copy Citation Text show less
    References

    [1] O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye sensitized colloidal titanium dioxide films. Nature, 1991, 353(6346): 737-740

    [2] Gratzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2003, 4(2): 145-153

    [3] Thomas W H, Rebecca A J, Alex B F M, Hal Van R, Joseph T H. Advancing beyond current generation dye-sensitized solar cells. Energy & Environmental Science, 2008, 1(1): 66-78

    [4] Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dyesensitized solar cells. Chemical Reviews, 2010, 110(11): 6595-6663

    [5] Odobel F, Le Pleux L, Pellegrin Y, Blart E. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Accounts of Chemical Research, 2010, 43(8): 1063-1071

    [6] Shi J F, Xu G, Miao L, Xu X. p-type and pn-type dye-sensitized solar cells. Acta Physico-Chimica Sinica, 2011, 27(6): 1287-1299 (in Chinese)

    [7] Odobel F, Pellegrin Y, Gibson E A, Hagfeldt A, Smeigh A L, Hammarstrom L. Recent advances and future directions to optimize the performance of p-type dye-sensitized solar cells. Coordination Chemistry Reviews, 2012, 256(21-22): 2413-2423

    [8] Yella A, Lee HW, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Gratzel M. Porphyrinsensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629-634

    [9] Wataru K, Ayumi S, Takayuki K, Yuji W, Shozo Y. Dye-sensitized solar cells: improvement of spectral response by tandem structure. Journal of Photochemistry and Photobiology A, Chemistry, 2004, 164(1-3): 33-39

    [10] Dürr M, Bamedi A, Yasuda A, Nelles G. Tandem dye-sensitized solar cell for improved power conversion efficiencies. Applied Physics Letters, 2004, 84(17): 3397-3399

    [11] Takeshi Y, Yuki U, Shinya A, Hironori A. Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10%. Solar Energy Materials and Solar Cells, 2009, 93(6-7): 733-736

    [12] Fan S Q, Fang B Z, Choi H B, Paik S, Kim C, Jeong B S, Kim J J, Ko J. Efficiency improvement of dye-sensitized tandem solar cell by increasing the photovoltage of the back sub-cell. Electrochimica Acta, 2010, 55(15): 4642-4646

    [13] Masatoshi Y, Nobuko O K, Mitsuhiko K, Kazuhiro S, Hideki S. Optimization of tandem-structured dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2010, 94(2): 297-302

    [14] Lee K, Park S W, Ko M J, Kim K, Park N G. Selective positioning of organic dyes in a mesoporous inorganic oxide film. Nature Materials, 2009, 8(8): 665-671

    [15] Miao Q,Wu L, Cui J, Huang M, Ma T. A new type of dye-sensitized solar cell with a multilayered photoanode prepared by a film-transfer technique. Advanced Materials (Deerfield Beach, Fla.), 2011, 23(24): 2764-2768

    [16] Huang F Z, Chen D H, Cao L, Caruso R A, Cheng Y B. Flexible dye-sensitized solar cells containing multiple dyes in discrete layers. Energy & Environmental Science, 2011, 4(8): 2803-2806

    [17] Murayama M, Mori T. Dye-sensitized solar cell using novel tandem cell structure. Journal of Physics D, Applied Physics, 2007, 40(6): 1664-1668

    [18] Murayama M, Mori T. Novel tandem cell structure of dye-sensitized solar cell for improvement in photocurrent. Thin Solid Films, 2008, 516(9): 2716-2722

    [19] Kenshiro U, Shyam S P, Shuzi H. Tandem dye-sensitized solar cells consisting of floating electrode in one cell. Journal of Photochemistry and Photobiology A, Chemistry, 2010, 216(2-3): 104-109

    [20] He J, Lindstrom H, Hagfeldt A, Lindquist S. Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. Journal of Physical Chemistry B, 1999, 103(42): 8940-8943

    [21] Powar S,Wu Q,Weidelener M, Nattesta A, Hu Z, Mishra A, Bauerle P, Spiccia L, Cheng Y B, Bach U. Improved photocurrents for ptype dye-sensitized solar cells using nano-structured nickel(II) oxide microballs. Energy & Environmental Science, 2012, doi: 10.1039/C2EE22127F

    [22] He J, Lindstrom H, Hagfeldt A, Lindquist S E. Dye-sensitized nanostructured tandem cell first demonstrated cell with a dyesensitized photocathode. Solar Energy Materials and Solar Cells, 2000, 62(3): 265-273

    [23] Nakasa A, Usami H, Sumikura S, Hasegawa S, Koyama T, Suzuki E. A high voltage dye-sensitized solar cell using a nanoporous NiO photocathode. Chemistry Letters, 2005, 34(4): 500-501

    [24] Nattestad A, Ferguson M, Kerr R, Cheng Y B, Bach U. Dyesensitized nickel(II)oxide photocathodes for tandem solar cell applications. Nanotechnology, 2008, 19(29): 295304

    [25] Mizoguchi Y, Fujihara S. Fabrication and dye-sensitized solar cell performance of nanostructured NiO/Coumarin 343 photocathodes. Electrochemical and Solid-State Letters, 2008, 11(8): K78-K80

    [26] Qin P, Zhu H, Edvinsson T, Boschloo G, Hagfeldt A, Sun L C. Design of an organic chromophore for p-type dye-sensitized solar cells. Journal of the American Chemical Society, 2008, 130(27): 8570-8571

    [27] Mori S, Fukuda S, Sumikura S, Takeda Y, Tamaki Y, Suzuki E, Abe T. Charge-transfer processes in dye-sensitized NiO solar cells. Journal of Physical Chemistry C, 2008, 112(41): 16134-16139

    [28] Lepleux L, Chavillon B, Pellegrin Y, Blart E, Cario L, Jobic S, Odobel F. Simple and reproducible procedure to prepare selfnanostructured NiO films for the fabrication of p-type dye-sensitized solar cells. Inorganic Chemistry, 2009, 48(17): 8245-8250

    [29] Qin P, Linder M, Brinck T, Boschloo G, Hagfeldt A, Sun L C. High incident photon-to-current conversion efficiency of p-type dye-sen sitized solar cells based on NiO and organic chromophores. Advanced Materials (Deerfield Beach, Fla.), 2009, 21(29): 2993-2996

    [30] Gibson E A, Smeigh A L, Le Pleux L, Fortage J, Boschloo G, Blart E, Pellegrin Y, Odobel F, Hagfeldt A, Hammarstrom L. A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V. Angewandte Chemie International Edition, 2009, 48(24): 4402-4405

    [31] Li L, Gibson E A, Qin P, Boschloo G, Gorlov M, Hagfeldt A, Sun L C. Double-layered NiO photocathodes for p-type DSSCs with record IPCE. Advanced Materials (Deerfield Beach, Fla.), 2010, 22(15): 1759-1762

    [32] Qin P,Wiberg J, Gibson E A, Linder M, Li L, Brinck T, Hagfeldt A, Albinsson B, Sun L C. Synthesis and mechanistic studies of organic chromophores with different energy levels for p-type dye-sensitized solar cells. Journal of Physical Chemistry C, 2010, 114(10): 4738-4748

    [33] Nattestad A, Mozer A J, Fischer M K R, Cheng Y B, Mishra A, Bauerle P, Bach U. Highly efficient photocathodes for dyesensitized tandem solar cells. Nature Materials, 2010, 9(1): 31-35

    [34] Zhang X L, Huang F, Nattestad A, Wang K, Fu D, Mishra A, Bauerle P, Bach U, Cheng Y B. Enhanced open-circuit voltage of ptype DSC with highly crystalline NiO nanoparticles. Chemical Communications, 2011, 47(16): 4808-4810

    [35] Zhang X L, Zhang Z, Huang F, Bauerle P, Bach U, Cheng Y B. Charge transport in photocathodes based on the sensitization of NiO Nanorods. Journal of Materials Chemistry, 2012, 22(14): 7005-7009

    [36] Ji Z Q, Natu G, Huang Z J, Wu Y Y. Linker effect in organic donoracceptor dyes for p-type NiO dye sensitized solar cells. Energy &Environmental Science, 2011, 4(8): 2818-2821

    [37] Ji Z Q, Natu G, Huang Z J, Kokhan O, Zhang X Y, Wu Y Y. Synthesis, photophysics and photovoltaic studies of ruthenium cyclometalated complexes as sensitizers for p-type NiO dyesensitized solar cells. Journal of Physical Chemistry C, 2012, 116(32): 16854-16863

    [38] Pellegrin Y, Pleux L, Blart E, Renaud A, Chavillon B, Szuwarski N, Boujtita M, Cario L, Jobic S, Jacquemin D, Odobel F. Ruthenium polypyridine complexes as sensitizers in NiO based p-type dyesensitized solar cells: effects of the anchoring groups. Journal of Photochemistry and Photobiology A, Chemistry, 2011, 219(2-3): 235-242

    [39] Gibson E A, Smeigh A L, Le Pleux L, Hammarstrom L, Odobel F, Boschloo G, Hagfeldt A. Cobalt polypyridyl-based electrolytes for p-type dye-sensitized solar cells. Journal of Physical Chemistry C, 2011, 115(19): 9772-9779

    [40] Nattestad A, Zhang X, Bach U, Cheng Y B. Dye-sensitized CuAlO2 photocathodes for tandem solar cell applications. Journal of Photonics for Energy, 2011, 1(1): 011103

    [41] Yu M Z, Natu G, Ji Z Q, Wu Y Y. p-type dye-sensitized solar cells based on delafossite CuGaO2 nanoplates with saturation photovoltages exceeding 460 mV. Journal of Physical Chemistry Letters, 2012, 3(9): 1074-1078

    [42] Renaud A, Chavillon B, Le Pleux L, Pellegrin Y, Blart E, Boujtita M, Pauporté T, Cario L, Jobic S, Odobel F. CuGaO2 a promising alternative for NiO in p-type dye solar cells. Journal of Materials Chemistry, 2012, 22(29): 14353-14356

    [43] Nakabayashi S, Ohta N, Fujishima A. Dye sensitization of synthetic p-type diamond electrode. Physical Chemistry Chemical Physics, 1999, 1(17): 3993-3997

    [44] Sumikura S, Mori S, Shimizu S, Usami H, Suzuki E. Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes. Journal of Photochemistry and Photobiology A, Chemistry, 2008, 194(2-3): 143-147

    [45] Chitambar M, Wang Z, Liu Y, Rockett A, Maldonado S. Dyesensitized photocathodes: efficient light-stimulated hole injection into p-GaP under depletion conditions. Journal of the American Chemical Society, 2012, 134(25): 10670-10681

    [46] Vera F, Schrebler R, Munoz E, Suarez C, Cury P, Gomez H, Cordova R, Marotti R E, Dalchiele E A. Preparation and characterization of eosin B- and erythrosin J-sensitized nanostructured NiO thin film photocathodes. Thin Solid Films, 2005, 490(2): 182-188

    [47] Xi Y Y, Li D, Djurisic A B, Xie M H, Man K Y K, Chan W K. Hydrothermal synthesis vs electrodeposition for high specific capacitance nanostructured NiO films. Electrochemical and Solid-State Letters, 2008, 11(6): D56-D59

    [48] Zhu H, Hagfeldt A, Boschloo G. Photoelectrochemistry of mesoporous NiO electrodes in iodide/triiodide electrolytes. Journal of Physical Chemistry C, 2007, 111(47): 17455-17458

    [49] Uehara S, Sumikura S, Suzuki E, Mori S. Retardation of electron injection at NiO/dye/electrolyte interface by aluminium alkoxide treatment. Energy & Environmental Science, 2010, 3(5): 641-644

    [50] Bian Z, Tachikawa T, Cui S C, Fujitsuka M, Majima T. Singlemolecule charge transfer dynamics in dye-sensitized p-type NiO solar cells: influences of insulating Al2O3 Layers. Chemical Science, 2012, 3(2): 370-379

    [51] Nagarajan R, Draeseke A D, Sleight A W, Tate J. p-type conductivity in CuCr1 - xMgxO2 films and powders. Journal of Applied Physics, 2001, 89(12): 8022-8025

    [52] Gillen R, Robertson J. Band structure calculations of CuAlO2, CuGaO2, CuInO2 and CuCrO2 by screened exchange. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(3): 035125

    [53] Morandeira A, Boschloo G, Hagfeldt A, Hammarstrom L. Photoinduced ultrafast dynamics of coumarin 343 sensitized ptype-nanostructured NiO films. Journal of Physical Chemistry B, 2005, 109(41): 19403-19410

    [54] Rehm J, McLendon G, Nagasawa Y, Yoshihara K, Moser J, Gratzel M. Femtosecond electron-transfer dynamics at a sensitizing dyesemiconductor (TiO2) interface. Journal of Physical Chemistry, 1996, 100(23): 9577-9578

    [55] Borgstrom M, Blart E, Boschloo G, Mukhtar E, Hagfeldt A, Hammarstrom L, Odobel F. Sensitized hole injection of phosphorus porphyrin into NiO: toward new photovoltaic devices. Journal of Physical Chemistry B, 2005, 109(48): 22928-22934

    [56] Sánchez-de-Armas R, San Miguel M á, Oviedo J, Sanz J F. Coumarin derivatives for dye sensitized solar cells: a TD-DFT study. Physical Chemistry Chemical Physics, 2012, 14(1): 225-233

    [57] Morandeira A, Fortage J, Edvinsson T, Le Pleux L, Blart E, Boschloo G, Hagfeldt A, Hammarstrom L, Odobel F. Improved photon-to-current conversion efficiency with a nanoporous p-type NiO electrode by the use of a sensitizer-acceptor dyad. Journal of Physical Chemistry C, 2008, 112(5): 1721-1728

    [58] Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov V N, Hein B, von Middendorff C, Schonle A, Hell S W. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature, 2009, 457(7233): 1159-1162

    [59] Wu X, Xing G, Tan S L, Webster R D, Sum T C, Yeow E K. Hole transfer dynamics from dye molecules to p-type NiO nanoparticles: effects of processing conditions. Physical Chemistry Chemical Physics, 2012, 14(26): 9511-9519

    [60] Morandeira A, Boschloo G, Hagfeldt A, Hammarstrom L. Coumarin 343-NiO films as nanostructured photocathodes in dyesensitized solar cells: ultrafast electron transfer, effect of the I-3/I-Redox couple and mechanism of photocurrent generation. Journal of Physical Chemistry C, 2008, 112(25): 9530-9537

    [61] Bremner S P, Levy M Y, Honsberg C B. Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Progress in Photovoltaics: Research and Applications, 2008, 16(3): 225-233

    [62] Liska P, Thampi K R, Gratzel M, Brémaud D, Rudmann D, Upadhyaya H M, Tiwari A N. Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency. Applied Physics Letters, 2006, 88(20): 203103

    [63] Wang W L, Lin H, Zhang J, Li X, Yamada A, Konagai M, Li J B. Experimental and simulation analysis of the dye sensitized solar cell/Cu(In,Ga)Se2 solar cell tandem structure. Solar Energy Materials and Solar Cells, 2010, 94(10): 1753-1758

    [64] Jeong W S, Lee J W, Jung S, Yun J H, Park N G. Evaluation of external quantum efficiency of a 12.35% tandem solar cell comprising dye-sensitized and CIGS solar cells. Solar Energy Materials and Solar Cells, 2011, 95(12): 3419-3423

    [65] Ito S, Dharmadasa I M, Tolan G J, Roberts J S, Hill G, Miura H, Yum J H, Pechy P, Liska P, Comte P, Gratzel M. High-voltage (1.8 V) tandem solar cell system using a GaAs/AlxGa(1 - x) As graded solar cell and dye-sensitised solar cells with organic dyes having different absorption spectra. Solar Energy, 2011, 85(6): 1220-1225

    [66] Greg D B, Paul G H, Seung-Hyun A L, Neal M A, Janine M, Thomas E M, Paul L, Shaik M Z, Michael G, Anita H B, Martin A G. Utilization of direct and diffuse sunlight in a dye-sensitized solar cell-silicon photovoltaic hybrid concentrator system. Journal of Physical Chemistry Letters, 2011, 2(6): 581-585

    [67] Ingmar B, Martin K, Felix E, Jaehyung H, Peter E, Anders H, Jürgen W, Neil P. Efficient organic tandem cell combining a solid state dyesensitized and a vacuum deposited bulk heterojunction solar cell. Solar Energy Materials and Solar Cells, 2009, 93(10): 1896-1899

    [68] Guo X Z, Zhang Y D, Qin D, Luo Y H, Li D M, Pang Y T, Meng Q B. Hybrid tandem solar cell for concurrently converting light and heat energy with utilization of full solar spectrum. Journal of Power Sources, 2010, 195(22): 7684-7690

    [69] Wang N, Han L, He H C, Park N H, Koumoto K. A novel highperformance photovoltaic-thermoelectric hybrid device. Energy & Environmental Science, 2011, 4(9): 3676-3679

    [70] Jeremie B, Maurin C, Florian L, Jun-Ho Y, Michael G, Kevin S. Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting. Journal of Materials Research, 2010, 25(1): 17-24

    [71] Kim J K, Shin K, Cho Sung M, Lee T W, Park J H. Synthesis of transparent mesoporous tungsten trioxide films with enhanced photoelectrochemical response: application to unassisted solar water splitting. Energy & Environmental Science, 2011, 4(4): 1465-1470

    Dehua XIONG, Wei CHEN. Recent progress on tandem structured dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2012, 5(4): 371
    Download Citation