[1] P. Ghelfi, F. Laghezza, F. Scotti. A fully photonics-based coherent radar system. Nature, 507, 341-345(2014).
[2] J. Hecht. The bandwidth bottleneck that is throttling the Internet. Nature, 536, 139-142(2016).
[3] V. V. Romashov, L. V. Romashova, K. K. Khramov. Wide-band hybrid frequency synthesizer with improved noise performance. Moscow Workshop on Electronic and Networking Technologies (MWENT), 1-4(2018).
[4] S. Pan, Y. Zhang. Microwave photonic radars. J. Lightwave Technol., 38, 5450-5484(2020).
[5] R. Chen, Z. Li, J. Shi. High secure sequence design in frequency hopping communications. China Commun., 16, 139-150(2019).
[6] Z. Yu, Z. Hao, W. Yao. A capacity enhancement method for frequency-hopping anti-jamming communication systems. Electronics, 12, 4457(2023).
[7] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 1, 319-330(2007).
[8] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).
[9] J. Yao. Microwave photonics. J. Lightwave Technol., 27, 314-335(2009).
[10] X. S. Yao, L. Maleki. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B, 13, 1725-1735(1996).
[11] X. S. Yao, L. Maleki. Optoelectronic oscillator for photonic systems. IEEE J. Quantum Electron., 32, 1141-1149(1996).
[12] L. Maleki. The optoelectronic oscillator. Nat. Photonics, 5, 728-730(2011).
[13] Y. K. Chembo, D. Brunner, M. Jacquot. Optoelectronic oscillators with time-delayed feedback. Rev. Mod. Phys., 91, 035006(2019).
[14] T. Hao, Y. Liu, J. Tang. Recent advances in optoelectronic oscillators. Adv. Photon., 2, 044001(2020).
[15] D. Eliyahu, D. Seidel, L. Maleki. Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system. IEEE International Frequency Control Symposium (IFCS), 811-814(2008).
[16] Z. Tang, S. Pan, D. Zhu. Tunable optoelectronic oscillator based on a polarization modulator and a chirped FBG. IEEE Photon. Technol. Lett., 24, 1487-1489(2012).
[17] W. Li, W. Zhang, J. Yao. Frequency-hopping microwave waveform generation based on a frequency-tunable optoelectronic oscillator. Optical Fiber Communication Conference (OFC), W1J.2(2014).
[18] H. Tang, Y. Yu, Z. Wang. Wideband tunable optoelectronic oscillator based on a microwave photonic filter with an ultra-narrow passband. Opt. Lett., 43, 2328-2331(2018).
[19] Z. Zeng, Z. Zhang, L. Zhang. Stable and finely tunable optoelectronic oscillator based on stimulated Brillouin scattering and an electro-optic frequency shift. Appl. Opt., 59, 589-594(2020).
[20] T. Hao, H. Ding, W. Li. Dissipative microwave photonic solitons in spontaneous frequency-hopping optoelectronic oscillators. Photon. Res., 10, 1280-1289(2022).
[21] Y. Jiang, J. Yu, Y. Wang. An optical domain combined dual-loop optoelectronic oscillator. IEEE Photon. Technol. Lett., 19, 807-809(2007).
[22] E. Shumakher, G. Eisenstein. A novel multiloop optoelectronic oscillator. IEEE Photon. Technol. Lett., 20, 1881-1883(2008).
[23] J. Zhang, J. Yao. Parity-time–symmetric optoelectronic oscillator. Sci. Adv., 4, eaar6782(2018).
[24] P. Li, Z. Dai, Z. Fan. Parity–time-symmetric frequency-tunable optoelectronic oscillator with a single dual-polarization optical loop. Opt. Lett., 45, 3139-3142(2020).
[25] C. Teng, X. Zou, P. Li. Fine tunable PT-symmetric optoelectronic oscillator based on laser wavelength tuning. IEEE Photon. Technol. Lett., 32, 47-50(2020).
[26] Z. Dai, Z. Fan, P. Li. Frequency-tunable parity-time-symmetric optoelectronic oscillator using a polarization-dependent Sagnac loop. J. Lightwave Technol, 38, 5327-5332(2020).
[27] Z. Fan, W. Zhang, Q. Qiu. Hybrid frequency-tunable parity-time symmetric optoelectronic oscillator. J. Lightwave Technol., 38, 2127-2133(2020).
[28] P. Liu, P. Zheng, H. Yang. Parity-time symmetric frequency-tunable optoelectronic oscillator based on a Si3N4 microdisk resonator. Appl. Opt., 60, 1930-1936(2021).
[29] H. Ding, Q. Cen, K. Xu. Observation of parity-time symmetry in time-division multiplexing pulsed optoelectronic oscillators within a single resonator. Photon. Res., 10, 1915-1923(2022).
[30] E. Özgün, F. Uyar, T. Kartaloglu. A parity-time-symmetric optoelectronic oscillator with polarization multiplexed channels. J. Opt., 24, 055802(2022).
[31] L. Wang, Y. Liu, Y. Yu. Parity–time-symmetric optoelectronic oscillator based on stimulated Brillouin scattering. ACS Photon., 10, 2308-2315(2023).
[32] L. Wang, X. Xiao, L. Xu. On-chip tunable parity-time symmetric optoelectronic oscillator. Adv. Photon. Nexus, 2, 016004(2023).
[33] I. C. Hunter, J. D. Rhodes. Electronically tunable microwave bandstop filters. IEEE Trans. Microw. Theory Tech., 30, 1361-1367(1982).
[34] X. Y. Zhang, Q. Xue, C. H. Chan. Low-loss frequency-agile bandpass filters with controllable bandwidth and suppressed second harmonic. IEEE Trans. Microw. Theory Tech., 58, 1557-1564(2010).
[35] X. S. Yao, L. Maleki, L. Davis. Coupled opto-electronic oscillators. IEEE International Frequency Control Symposium (IFCS), 540-544(1998).
[36] X. S. Yao, L. Davis, L. Maleki. Coupled optoelectronic oscillators for generating both RF signal and optical pulses. J. Lightwave Technol., 18, 73-78(2000).
[37] N. Yu, E. Salik, L. Maleki. Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration. Opt. Lett., 30, 1231-1233(2005).
[38] O. Lelievre, V. Crozatier, G. Baili. Experimental design of a low phase noise coupled optoelectronic oscillator at 10 GHz. International Topical Meeting on Microwave Photonics (MWP), 1-4(2017).
[39] E. Salik, N. Yu, L. Maleki. An ultralow phase noise coupled optoelectronic oscillator. IEEE Photon. Technol. Lett., 19, 444-446(2007).
[40] X. Yi, Q. Yang, X. Zhang. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun., 8, 14869(2017).
[41] E. Lucas, P. Brochard, R. Bouchand. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun., 11, 374(2020).
[42] Z. Ahmed, L. Zhai, A. J. Lowery. Locking bandwidth of actively mode-locked semiconductor lasers. IEEE J. Quantum Electron., 29, 1714-1721(1993).
[43] A. B. Matsko, D. Eliyahu, P. Koonath. Theory of coupled optoelectronic microwave oscillator I: expectation values. J. Opt. Soc. Am. B, 26, 1023-1031(2009).
[44] K. Sato, H. Toba. Reduction of mode partition noise by using semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron., 7, 328-333(2001).
[45] C. Peng, M. Yao, Q. Xu. Suppression of supermode competitions in SOA fiber mode-locked ring laser. 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS), 377-378(2002).
[46] L. Xu, I. Glesk, D. Rand. Suppression of beating noise of narrow-linewidth erbium-doped fiber ring lasers by use of a semiconductor optical amplifier. Opt. Lett., 28, 780-782(2003).
[47] J. Yao, J. Yao, Z. Deng. Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise. Opt. Express, 12, 4529-4534(2004).
[48] G. Lin, M. Wu, Y. Chang. Ultrahigh supermode noise suppressing ratio of a semiconductor optical amplifier filtered harmonically mode-locked erbium-doped fiber laser. Opt. Express, 13, 7215-7224(2005).
[49] K. Kikuchi, C. E. Zah, T. P. Lee. Measurement and analysis of phase noise generated from semiconductor optical amplifiers. IEEE J. Quantum Electron., 27, 416-422(1991).
[50] M. Martinelli. A universal compensator for polarization changes induced by non-reciprocal circular birefringence on a retracing beam. Opt. Commun., 72, 341-344(1989).
[51] G. P. Agrawal, N. A. Olsson. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron., 25, 2297-2306(1989).
[52] M. Wu, Y. Chang, G. Lin. Phase noise and supermode suppression in harmonic mode-locked erbium-doped fiber laser with a semiconductor optical amplifier based high-pass filter. Optical Fiber Communication Conference (OFC)(2005).
[53] P. Liu, Z. Xie, D. Lin. Parity-time symmetric tunable OEO based on dual-wavelength and cascaded PS-FBGs in a single-loop. Opt. Express, 29, 35377-35386(2021).
[54] A. A. Savchenkov, V. S. Ilchenko, W. Liang. Voltage-controlled photonic oscillator. Opt. Lett., 35, 1572-1574(2010).