• High Power Laser and Particle Beams
  • Vol. 34, Issue 10, 104009 (2022)
Hai Jiang1、2, Wentao Wang2、*, Ke Feng2, Zhengxian Gu1, and Ruxin Li2、3、*
Author Affiliations
  • 1College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences, Shanghai 201800, China
  • 3School of Physics Science and Technology, Shanghai Tech University, Shanghai 200031, China
  • show less
    DOI: 10.11884/HPLPB202234.220090 Cite this Article
    Hai Jiang, Wentao Wang, Ke Feng, Zhengxian Gu, Ruxin Li. Research progress of free electron laser based on laser plasma acceleration[J]. High Power Laser and Particle Beams, 2022, 34(10): 104009 Copy Citation Text show less
    References

    [1] Daukantas P. Synchrotron light sources for the 21st century[J]. Optics and Photonics News, 32, 32-39(2021).

    [2] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 43, 267-270(1979).

    [3] Gordon D, Tzeng K C, Clayton C E, et al. Observation of electron energies beyond the linear dephasing limit from a laser-excited relativistic plasma wave[J]. Physical Review Letters, 80, 2133-2136(1998).

    [4] Leemans W P, Gonsalves A J, Mao H S, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 113, 245002(2014).

    [5] Gonsalves A J, Nakamura K, Daniels J, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 122, 084801(2019).

    [6] Nakajima K. Towards a table-top free-electron laser[J]. Nature Physics, 4, 92-93(2008).

    [7] Emma C, Van Tilborg J, Assmann R, et al. Free electron lasers driven by plasma accelerators: status and near-term prospects[J]. High Power Laser Science and Engineering, 9, e57(2021).

    [8] Sarri G. Laserdriven positron sources f applications in fundamental science industry[C]Proceedings of SPIE 11790, Applying Laserdriven Particle Acceleration II, Medical Nonmedical Uses of Distinctive Energetic Particle Photon Sources: SPIE Optics + Optoelectronics Industry Event. 2021: 117900F.

    [9] Huang Zhirong, Kim K J. Review of X-ray free-electron laser theory[J]. Physical Review Accelerators and Beams, 10, 034801(2007).

    [10] Faure J, Glinec Y, Pukhov A, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 431, 541-544(2004).

    [11] Chen Min, Sheng Zhengming, Ma Yanyun, et al. Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases[J]. Journal of Applied Physics, 99, 056109(2006).

    [12] Buck A, Wenz J, Xu J, et al. Shock-front injector for high-quality laser-plasma acceleration[J]. Physical Review Letters, 110, 185006(2013).

    [13] Yu L L, Esarey E, Schroeder C B, et al. Two-color laser-ionization injection[J]. Physical Review Letters, 112, 125001(2014).

    [14] Tomassini P, Terzani D, Baffigi F, et al. High-quality 5 GeV electron bunches with resonant multi-pulse ionization injection[J]. Plasma Physics and Controlled Fusion, 62, 014010(2020).

    [15] Xu X L, Li F, An W, et al. High quality electron bunch generation using a longitudinal density-tailored plasma-based accelerator in the three-dimensional blowout regime[J]. Physical Review Accelerators and Beams, 20, 111303(2017).

    [16] Pollock B B, Clayton C E, Ralph J E, et al. Demonstration of a narrow energy spread, ~0.5 GeV electron beam from a two-stage laser wakefield accelerator[J]. Physical Review Letters, 107, 045001(2011).

    [17] Liu J S, Xia C Q, Wang W T, et al. All-optical cascaded laser wakefield accelerator using ionization-induced injection[J]. Physical Review Letters, 107, 035001(2011).

    [18] Zhang Zhijun, Li Wentao, Liu Jiansheng, et al. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching[J]. Physics of Plasmas, 23, 053106(2016).

    [19] Brinkmann R, Delbos N, Dornmair I, et al. Chirp mitigation of plasma-accelerated beams by a modulated plasma density[J]. Physical Review Letters, 118, 214801(2017).

    [20] Manahan G G, Habib A F, Scherkl P, et al. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams[J]. Nature Communications, 8, 15705(2017).

    [21] Li F, Hua J F, Xu X L, et al. Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield accelerator[J]. Physical Review Letters, 111, 015003(2013).

    [22] Wang W T, Li W T, Liu J S, et al. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control[J]. Physical Review Letters, 117, 124801(2016).

    [23] Ke L T, Feng K, Wang W T, et al. Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma[J]. Physical Review Letters, 126, 214801(2021).

    [24] Shalloo R J, Dann S J D, Gruse J N, et al. Automation and control of laser wakefield accelerators using Bayesian optimization[J]. Nature Communications, 11, 6355(2020).

    [25] Jalas S, Kirchen M, Messner P, et al. Bayesian optimization of a laser-plasma accelerator[J]. Physical Review Letters, 126, 104801(2021).

    [26] Dornmair I, Floettmann K, Maier A R. Emittance conservation by tailored focusing profiles in a plasma accelerator[J]. Physical Review Accelerators and Beams, 18, 041302(2015).

    [27] Fang Ming, Wang Wentao, Zhang Zhijun, et al. Long-distance characterization of high-quality laser-wakefield-accelerated electron beams[J]. Chinese Optics Letters, 16, 040201(2018).

    [28] van Tilborg J, Steinke S, Geddes C G R, et al. Active plasma lensing for relativistic laser-plasma-accelerated electron beams[J]. Physical Review Letters, 115, 184802(2015).

    [29] Thaury C, Guillaume E, Döpp A, et al. Demonstration of relativistic electron beam focusing by a laser-plasma lens[J]. Nature Communications, 6, 6860(2015).

    [30] van Tilborg J, Barber S K, Isono F, et al. Free-electron lasers driven by laser plasma accelerators[J]. AIP Conference Proceedings, 1812, 020002(2017).

    [31] Wu Fenxiang, Zhang Zongxin, Yang Xiaojun, et al. Performance improvement of a 200TW/1Hz Ti: sapphire laser for laser wakefield electron accelerator[J]. Optics & Laser Technology, 131, 106453(2020).

    [32] Maier A R, Meseck A, Reiche S, et al. Demonstration scheme for a laser-plasma-driven free-electron laser[J]. Physical Review X, 2, 031019(2012).

    [33] Huang Zhirong, Ding Yuantao, Schroeder C B. Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator[J]. Physical Review Letters, 109, 204801(2012).

    [34] Couprie M E, Labat M, Evain C, et al. An application of laser-plasma acceleration: towards a free-electron laser amplification[J]. Plasma Physics and Controlled Fusion, 58, 034020(2016).

    [35] Delbos N, Werle C, Dornmair I, et al. Lux - A laser-plasma driven undulator beamline[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 909, 318-322(2018).

    [36] Liu Tao, Zhang Tong, Wang Dong, et al. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator[J]. Physical Review Accelerators and Beams, 20, 020701(2017).

    [37] Schlenvoigt H P, Haupt K, Debus A, et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator[J]. Nature Physics, 4, 130-133(2008).

    [38] Fuchs M, Weingartner R, Popp A, et al. Laser-driven soft-X-ray undulator source[J]. Nature Physics, 5, 826-829(2009).

    [39] André T, Andriyash I A, Loulergue A, et al. Control of laser plasma accelerated electrons for light sources[J]. Nature Communications, 9, 1334(2018).

    [40] Wang Wentao, Feng Ke, Ke Lintong, et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 595, 516-520(2021).

    Hai Jiang, Wentao Wang, Ke Feng, Zhengxian Gu, Ruxin Li. Research progress of free electron laser based on laser plasma acceleration[J]. High Power Laser and Particle Beams, 2022, 34(10): 104009
    Download Citation