• Advanced Photonics Nexus
  • Vol. 4, Issue 2, 026010 (2025)
Lintao Peng1, Siyu Xie1, Hui Lu1, and Liheng Bian1,2,3,*
Author Affiliations
  • 1Beijing Institute of Technology, MIIT Key Laboratory of Complex-Field Intelligent Sensing, Beijing, China
  • 2Beijing Institute of Technology, Guangdong Province Key Laboratory of Intelligent Detection in Complex Environment of Aerospace, Land and Sea, Zhuhai, China
  • 3Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, China
  • show less
    DOI: 10.1117/1.APN.4.2.026010 Cite this Article Set citation alerts
    Lintao Peng, Siyu Xie, Hui Lu, Liheng Bian, "Large-scale single-pixel imaging and sensing," Adv. Photon. Nexus 4, 026010 (2025) Copy Citation Text show less
    References

    [1] M. P. Edgar, G. M. Gibson, M. J. Padgett. Principles and prospects for single-pixel imaging. Nat. Photonics, 13, 13-20(2019).

    [2] Z. Zhang, X. Ma, J. Zhong. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun., 6, 1-6(2015).

    [3] W. Withayachumnankul, D. Abbott. Terahertz imaging: compressing onto a single pixel. Nat. Photonics, 8, 593-594(2014).

    [4] R. I. Stantchev et al. Real-time terahertz imaging with a single-pixel detector. Nat. Commun., 11, 2535(2020).

    [5] W. Chen, X. Chen. Ghost imaging for three-dimensional optical security. Appl. Phys. Lett, 103, 221106(2013).

    [6] P. Zheng et al. Metasurface-based key for computational imaging encryption. Sci. Adv, 7, eabg0363(2021).

    [7] S. Ota et al. Ghost cytometry. Science, 360, 1246-1251(2018).

    [8] J. Li et al. Spectrally encoded single-pixel machine vision using diffractive networks. Sci. Adv, 7, eabd7690(2021).

    [9] P. Kilcullen, T. Ozaki, J. Liang. Compressed ultrahigh-speed single-pixel imaging by swept aggregate patterns. Nat. Commun., 13, 7879(2022).

    [10] M.-J. Sun et al. Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun., 7, 12010(2016).

    [11] R. Stojek et al. Single pixel imaging at high pixel resolutions. Opt. Express, 30, 22730-22745(2022).

    [12] M. Wenwen et al. Sparse Fourier single-pixel imaging. Opt. Express, 27, 31490-31503(2019).

    [13] M. Lyu et al. Deep-learning-based ghost imaging. Sci. Rep, 7, 17865(2017).

    [14] P. Ryczkowski et al. Ghost imaging in the time domain. Nat. Photonics, 10, 167-170(2016).

    [15] K. Kulkarni et al. Reconnet: non-iterative reconstruction of images from compressively sensed measurements(2016).

    [16] O. Graydon. Imaging: retina-like single-pixel camera. Nat. Photonics, 11, 335(2017).

    [17] S. C. Yurtkulu, Y. H. Şahin, G. Unal. Semantic segmentation with extended DeepLabv3 architecture, 1-4(2019).

    [18] Y. Huang et al. Unsupervised interpolation recovery method for spectrum anomaly detection and localization. Space: Sci. Technol., 3, 0082(2023).

    [19] A. Gatti et al. Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett., 93, 093602(2004).

    [20] B. Sun et al. 3D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).

    [21] M.-J. Sun et al. A Russian dolls ordering of the Hadamard basis for compressive single-pixel imaging. Sci. Rep., 7, 3464(2017).

    [22] C. F. Higham et al. Deep learning for real-time single-pixel video. Sci. Rep., 8, 1-9(2018).

    [23] M. Zhao et al. Generative adversarial network-based single-pixel imaging. J. Soc. Inf. Disp., 30, 648-656(2022).

    [24] H. Fu, L. Bian, J. Zhang. Single-pixel sensing with optimal binarized modulation. Opt. Lett., 45, 3111-3114(2020).

    [25] H. Liu, L. Bian, J. Zhang. Image-free single-pixel segmentation. Opt. Laser Technol., 157, 108600(2023).

    [26] A. Vaswani et al. Attention is all you need, 6000-6010(2017).

    [27] J. Redmon, A. Farhadi. YOLO9000: better, faster, stronger, 6517-6525(2017).

    [28] A. Dosovitskiy et al. An image is worth 16 x 16 words: transformers for image recognition at scale(2021).

    [29] F. Chollet. Xception: deep learning with depthwise separable convolutions, 1800-1807(2017).

    [30] Q. Ning et al. Uncertainty-driven loss for single image super-resolution, 16398-16409(2021).

    [31] M. Everingham et al. The PASCAL visual object classes challenge 2010 (VOC2010) results(2010).

    [32] B. Lim et al. Enhanced deep residual networks for single image super-resolution, 1132-1140(2017).

    [33] X. Zheng et al. Fast and robust segmentation of white blood cell images by self-supervised learning. Micron, 107, 55-71(2018).

    [34] L. Beiser. Fundamental architecture of optical scanning systems. Appl. Opt, 34, 7307-7317(1995).

    [35] D. Jha et al. Kvasir-seg: a segmented polyp dataset. Lect. Notes Comput. Sci., 11962, 451-462(2020).

    [36] D. Jha et al. ResUNet++: an advanced architecture for medical image segmentation, 225-2255(2019).

    [37] S. Ren et al. Faster R-CNN: towards real-time object detection with region proposal networks(2015).

    [38] I. Goodfellow et al. Generative adversarial nets, 2672-2680(2014).

    [39] L. Bian et al. Experimental comparison of single-pixel imaging algorithms. J. Opt. Soc. Am. A, 35, 78-87(2018).

    [40] O. Ronneberger, P. Fischer, T. Brox. U-Net: convolutional networks for biomedical image segmentation. Let. Notes Comput. Sci., 9351, 234-241(2015).

    [41] R. Girshick et al. Rich feature hierarchies for accurate object detection and semantic segmentation, 580-587(2014).

    [42] W. Liu et al. SSD: single shot multibox detector. Lect. Notes Comput. Sci., 9905, 21-37(2016).

    [43] A. Bar et al. DETReg: unsupervised pretraining with region priors for object detection, 14585-14595(2022).

    [44] L. Bian et al. High-resolution single-photon imaging with physics-informed deep learning. Nat. Commun., 14, 5902(2023).