• Journal of Synthetic Crystals
  • Vol. 54, Issue 4, 700 (2025)
BAI Shiyu1,2, ZHAO Xingyu1,2, LIN Jiawei1,2, QUAN Guoqiang1,2, and WANG Lina1,2,*
Author Affiliations
  • 1School of Physical Science and Technology, Yili Normal University, Yining 835000, China
  • 2Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, Yili Normal University, Yining 835000, China
  • show less
    DOI: 10.16553/j.cnki.issn1000-985x.2024.0198 Cite this Article
    BAI Shiyu, ZHAO Xingyu, LIN Jiawei, QUAN Guoqiang, WANG Lina. Relationship Between Microstructures of High Concentration Sodium Chloride Aqueous Solutions and Crystals Formed from Them[J]. Journal of Synthetic Crystals, 2025, 54(4): 700 Copy Citation Text show less
    References

    [1] TONG J H, PENG B L, KONTOGEORGIS G M, et al. Behavior of the aqueous sodium chloride solutions from molecular simulations and theories[J]. Journal of Molecular Liquids, 2023, 371: 121086.

    [2] KNIPPING E M, LAKIN M J, FOSTER K L, et al. Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols[J]. Science, 2000, 288(5464): 301-306.

    [3] OUM K W, LAKIN M J, DEHAAN D O, et al. Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles[J]. Science, 1998, 279(5347): 74-77.

    [4] FINLAYSON-PITTS B J, HEMMINGER J C. Physical chemistry of airborne sea salt particles and their components[J]. The Journal of Physical Chemistry A, 2000, 104(49): 11463-11477.

    [5] HIROKAWA J, ONAKA K, KAJII Y, et al. Heterogeneous processes involving sodium halide particles and ozone: molecular bromine release in the marine boundary layer in the absence of nitrogen oxides[J]. Geophysical Research Letters, 1998, 25(13): 2449-2452.

    [6] MOUKA F, NEZBEDA I, SMITH W R. Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations[J]. The Journal of Chemical Physics, 2013, 138(15): 154102.

    [7] NEZBEDA I, MOUKA F, SMITH W R. Recent progress in molecular simulation of aqueous electrolytes: force fields, chemical potentials and solubility[J]. Molecular Physics, 2016, 114(11): 1665-1690.

    [8] BAKKER H J. Structural dynamics of aqueous salt solutions[J]. Chemical Reviews, 2008, 108(4): 1456-1473.

    [9] AI Z, LI S J, ZHAO Y L, et al. Atomic insights into flotation separation of KCl and NaCl from a new viewpoint of hydration layer: a molecular dynamic study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602: 125071.

    [10] CHOUDHURI J R, CHANDRA A. Anab initiomolecular dynamics study of the liquid-vapor interface of an aqueous NaCl solution: inhomogeneous density, polarity, hydrogen bonds, and frequency fluctuations of interfacial molecules[J]. The Journal of Chemical Physics, 2014, 141(19): 194705.

    [11] KOMORI K, TERAO T. Cluster-size distribution of ions in concentrated aqueous NaCl solutions: molecular dynamics simulations[J]. Chemical Physics Letters, 2023, 825: 140627.

    [12] SMITH D E, DANG L X. Computer simulations of NaCl association in polarizable water[J]. Journal of Chemical Physics, 1994, 100(5): 3757-3766.

    [13] SEAL S, DOBLHOFF-DIER K, MEYER J. Dielectric decrement for aqueous NaCl solutions: effect of ionic charge scaling in nonpolarizable water force fields[J]. The Journal of Physical Chemistry B, 2019, 123(46): 9912-9921.

    [14] LIU Y, HUANG K M, GOU D Z, et al. Electrical conductivity variations of aqueous NaCl solutions with microwave field: a molecular dynamics study[J]. Chemical Physics, 2021, 545: 111134.

    [15] GE S, ZHANG X X, CHEN M. Viscosity of NaCl aqueous solution under supercritical conditions: a molecular dynamics simulation[J]. Journal of Chemical & Engineering Data, 2011, 56(4): 1299-1304.

    [18] REN G, SHI R, WANG Y T. Structural, dynamic, and transport properties of concentrated aqueous sodium chloride solutions under an external static electric field[J]. The Journal of Physical Chemistry B, 2014, 118(16): 4404-4411.

    [19] UCHIDA H, MATSUOKA M. Molecular dynamics simulation of solution structure and dynamics of aqueous sodium chloride solutions from dilute to supersaturated concentration[J]. Fluid Phase Equilibria, 2004, 219(1): 49-54.

    [21] BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials[J]. The Journal of Physical Chemistry, 1987, 91(24): 6269-6271.

    [22] BONFRATE S, FERR N, HUIX-ROTLLANT M. Analytic gradients for the electrostatic embedding QM/MM model in periodic boundary conditions using particle-mesh Ewald sums and electrostatic potential fitted charge operators[J]. Journal of Chemical Theory and Computation, 2024, 20(10): 4338-4349.

    [23] LANGFELDT F. On the validity of periodic boundary conditions for modelling finite plate-type acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2024, 155(2): 837-845.

    [24] TRINH T T, HAMMER M, SHARMA V, et al. Mie-FH: a quantum corrected pair potential in the LAMMPS simulation package for hydrogen mixtures[J]. SoftwareX, 2024, 26: 101716.

    [25] HAMMOND K D. Parallel point defect identification in molecular dynamics simulations without post-processing: a compute and dump style for LAMMPS[J]. Computer Physics Communications, 2020, 247: 106862.

    [28] BARENBAUM A, KLIMOV D. Theoretical model Anderson-Schulz-Flory within the framework of studying the mechanism of polycondensation synthesis[J]. Inorganic Chemistry Communications, 2020, 112: 107664.

    BAI Shiyu, ZHAO Xingyu, LIN Jiawei, QUAN Guoqiang, WANG Lina. Relationship Between Microstructures of High Concentration Sodium Chloride Aqueous Solutions and Crystals Formed from Them[J]. Journal of Synthetic Crystals, 2025, 54(4): 700
    Download Citation