• Chinese Journal of Lasers
  • Vol. 48, Issue 5, 0501005 (2021)
Chuan Bai1, Wenlong Tian1, Geyang Wang1, Li Zhen1, Rui Xu1, Dacheng Zhang1, Zhaohua Wang2, Jiangfeng Zhu1、*, and Zhiyi Wei2
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
  • 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    DOI: 10.3788/CJL202148.0501005 Cite this Article Set citation alerts
    Chuan Bai, Wenlong Tian, Geyang Wang, Li Zhen, Rui Xu, Dacheng Zhang, Zhaohua Wang, Jiangfeng Zhu, Zhiyi Wei. Progress on Yb-Doped All-Solid-State Femtosecond Laser Amplifier with High Repetition Rate[J]. Chinese Journal of Lasers, 2021, 48(5): 0501005 Copy Citation Text show less
    References

    [1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).

    [2] Goulielmakis E, Schultze M, Hofstetter M et al. Single-cycle nonlinear optics[J]. Science, 320, 1614-1617(2008).

    [3] Zhao K, Zhang Q, Chini M et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch[J]. Optics Letters, 37, 3891-3893(2012). http://www.ncbi.nlm.nih.gov/pubmed/23041894

    [4] Zhou S Y, Bai Y F, Tian Y et al. Self-organized kilotesla magnetic-tube array in an expanding spherical plasma irradiated by kHz femtosecond laser pulses[J]. Physical Review Letters, 121, 255002(2018).

    [5] Cingöz A, Yost D C, Allison T K et al. Direct frequency comb spectroscopy in the extreme ultraviolet[J]. Nature, 482, 68-71(2012).

    [6] Koralek J D, Douglas J F, Plumb N C et al. Laser based angle-resolved photoemission, the sudden approximation, and quasiparticle-like spectral peaks in Bi2Sr2CaCu2O8+δ[J]. Physical Review Letters, 96, 017005(2006).

    [7] Stockman M I, Kling M F, Kleineberg U et al. Attosecond nanoplasmonic-field microscope[J]. Nature Photonics, 1, 539-544(2007).

    [8] Lorek E, Larsen E W, Heyl C M et al. High-order harmonic generation using a high-repetition-rate turnkey laser[J]. The Review of Scientific Instruments, 85, 123106(2014). http://www.ncbi.nlm.nih.gov/pubmed/25554271

    [9] Russbueldt P, Mans T, Weitenberg J et al. Compact diode-pumped 1.1 kW Yb∶YAG Innoslab femtosecond amplifier[J]. Optics Letters, 35, 4169-4171(2010).

    [10] Nubbemeyer T, Kaumanns M, Ueffing M et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 42, 1381-1384(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=a5223991d8a0297bef41930e02cf0101

    [11] Eidam T, Hanf S, Seise E et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 35, 94-96(2010).

    [12] Gao Z Y, Zhu J F, Wang J L et al. Generation of 33 fs pulses directly from a Kerr-lens mode-locked Yb∶CaYAlO4 laser[J]. Photonics Research, 3, 335-338(2015). http://dx.doi.org/10.1364/prj.3.000335

    [13] Machinet G, Sevillano P, Guichard F et al. High-brightness fiber laser-pumped 68 fs-2.3 W Kerr-lens mode-locked Yb∶CaF2 oscillator[J]. Optics Letters, 38, 4008-4010(2013).

    [14] Südmeyer T, Kränkel C. Baer C R E, et al. High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation[J]. Applied Physics B, 97, 281-295(2009). http://link.springer.com/article/10.1007/s00340-009-3700-z

    [15] Dörring J, Killi A, Morgner U et al. Period doubling and deterministic chaos in continuously pumped regenerative amplifiers[J]. Optics Express, 12, 1759-1768(2004).

    [16] Salin F, Blanc C, Squier J et al. Thermal eigenmode amplifiers for diffraction-limited amplification of ultrashort pulses[J]. Optics Letters, 23, 718-720(1998).

    [17] Frede M, Wilheim R, Brendel M et al. High power fundamental mode Nd∶YAG laser with efficient birefringence compensation[J]. Optics Express, 12, 3581-3589(2004).

    [18] Matsubara S, Tanaka M, Takama M et al. A picosecond thin-rod Yb∶YAG regenerative laser amplifier with the high average power of 20 W[J]. Laser Physics Letters, 10, 055810(2013).

    [19] Lü Q, Kugler N, Weber H et al. A novel approach for compensation of birefringence in cylindrical Nd∶YAG rods[J]. Optical and Quantum Electronics, 28, 57-69(1996). http://link.springer.com/article/10.1007/BF00578551

    [20] Sichelstiel B, Waters W, Wild T. Self-focusing array research model[J]. IEEE Transactions on Antennas and Propagation, 12, 150-154(1964). http://www.onacademic.com/detail/journal_1000036813727710_8d8d.html

    [21] Zhao K. Laser, chirped pulse amplification, ultrafast optics, and Nobel prize in physics[J]. Chinese Science Bulletin, 64, 1433-1440(2019).

    [22] Rouyer C, Mazataud É, Allais I et al. Generation of 50-TW femtosecond pulses in a Ti: sapphire/Nd chain[J]. Optics Letters, 18, 214-216(1993).

    [23] Fan T Y, Ripin D J, Aggarwal R L et al. Cryogenic Yb 3+-doped solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 448-459(2007).

    [24] Kuleshov N V, Lagatsky A A, Podlipensky A V et al. Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2[J]. Optics Letters, 22, 1317-1319(1997). http://www.onacademic.com/detail/journal_1000035241159910_f72c.html

    [25] Chénais S, Druon F, Forget S et al. On thermal effects in solid-state lasers: the case of ytterbium-doped materials[J]. Progress in Quantum Electronics, 30, 89-153(2006). http://www.zhangqiaokeyan.com/open-access_resources_thesis/0100088656988.html

    [26] Siebold M, Bock S, Schramm U et al. Yb∶CaF2—a new old laser crystal[J]. Applied Physics B, 97, 327-338(2009). http://link.springer.com/10.1007/s00340-009-3701-y

    [27] Xing H Y. Research progress of Yb∶CaGdAlO4 crystal[J]. Foundry Technology, 38, 280-284(2017).

    [28] Hönninger C, Johannsen I, Moser M et al. Diode-pumped thin-disk Yb∶YAG regenerative amplifier[J]. Applied Physics B, 65, 423-426(1997). http://www.opticsinfobase.org/abstract.cfm?uri=ASSL-1998-TS3

    [29] Havrilla D, Ryba T, Holzer M. High-power disk lasers: advances and applications[J]. Proceedings of SPIE, 8235, 82350W(2012).

    [30] Metzger T, Schwarz A, Teisset C Y et al. High-repetition-rate picosecond pump laser based on a Yb∶YAG disk amplifier for optical parametric amplification[J]. Optics Letters, 34, 2123-2125(2009).

    [31] Grishin M, Gulbinas V, Michailovas A. Dynamics of high repetition rate regenerative amplifiers[J]. Optics Express, 15, 9434-9443(2007).

    [32] Smrž M, Chyla M, Novák O et al. Amplification of picosecond pulses to 100 W by an Yb∶YAG thin-disk with CVBG compressor[J]. Proceedings of SPIE, 9513, 951304(2015). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2293819

    [33] Krötz P, Wandt C, Grebing C et al. Towards 2 kW, 20 kHz ultrafast thin-disk based regenerative amplifiers[C]. //Advanced Solid State Lasers 2019, September 29-October 3, 2019, Vienna, Austria., ATh1A, 8(2019).

    [34] Pouysegur J, Delaigue M, Hönninger C et al. Generation of 150-fs pulses from a diode-pumped Yb∶KYW nonlinear regenerative amplifier[J]. Optics Express, 22, 9414-9419(2014).

    [35] Pouysegur J, Delaigue M, Hönninger C et al. Numerical and experimental analysis of nonlinear regenerative amplifiers overcoming the gain bandwidth limitation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 212-219(2015). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6809849&punumber%3D2944

    [36] Ueffing M, Lange R, Pleyer T et al. Direct regenerative amplification of femtosecond pulses to the multimillijoule level[J]. Optics Letters, 41, 3840-3843(2016). http://europepmc.org/abstract/MED/27519103

    [37] Liu H H, Nees J, Mourou G. Directly diode-pumped Yb∶KY(WO4)2 regenerative amplifiers[J]. Optics Letters, 27, 722-724(2002). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-27-9-722

    [38] Liu H, Nees J, Mourou G et al. Yb∶KGd(WO4)2 chirped-pulse regenerative amplifiers[J]. Optics Communications, 203, 315-321(2002). http://www.sciencedirect.com/science/article/pii/S0030401802011203

    [39] Delaigue M, Manek-Hönninger I, Salin F et al. 300 kHz femtosecond Yb∶KGW regenerative amplifier using an acousto-optic Q-switch[J]. Applied Physics B, 84, 375-378(2006). http://www.ingentaconnect.com/content/ssam/09462171/2006/00000084/00000003/art00002

    [40] Leng Y X, Lin L H, Xu Z Z. Spectrum shaping in a Ti∶sapphire regenrative amplifier[J]. Acta Optica Sinica, 22, 170-173(2002).

    [41] Zhao H T, Major A. Dynamic characterization of intracavity losses in broadband quasi-three-level lasers[J]. Optics Express, 22, 26651-26658(2014).

    [42] Stučinskas D, Antipenkov R, Varanavičius A. 30 W dual active element Yb∶KGW regenerative amplifier for amplification of sub-500 fs pulses[J]. Proceedings of SPIE, 6731, 67312Y(2007).

    [43] Kim G H, Yang J, Kulik A V et al. Power limitations and pulse distortions in an Yb∶KGW chirped-pulse amplification laser system[J]. Quantum Electronics, 43, 725-730(2013). http://www.mathnet.ru/eng/qe15094

    [44] Kim G H, Yang J H, Lee D S et al. Femtosecond laser based on Yb∶KYW crystals with suppression of spectral narrowing in a regenerative amplifier by spectral profiling of the pulse[J]. Journal of Optical Technology, 80, 142-147(2013). http://www.opticsinfobase.org/jot/abstract.cfm?uri=jot-80-3-142

    [45] Calendron A L, Çankaya H, Kärtner F X. High-energy kHz Yb∶KYW dual-crystal regenerative amplifier[J]. Optics Express, 22, 24752-24762(2014).

    [46] He H J, Yu J, Zhu W T et al. A Yb∶KGW dual-crystal regenerative amplifier[J]. High Power Laser Science and Engineering, 8, e35(2020). http://www.researchgate.net/publication/346411201_A_YbKGW_dual-crystal_regenerative_amplifier

    [47] Yan D Y, Liu B W, Chu Y X et al. Hybrid femtosecond laser system based on a Yb∶KGW regenerative amplifier for NP polarization[J]. Chinese Optics Letters, 17, 041404(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ6bebdad5b8e6745e

    [48] Pugžlys A, Sidorov D, Ali T et al. Spectroscopic and lasing properties of cryogenically cooled Yb, Na∶CaF2[C]. //Advanced Solid-State Photonics, January 27-30, 2008, Nara, Japan., MF4(2008).

    [49] Pugžlys A, Andriukaitis G, Baltuška A et al. Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb, Na∶CaF2 amplifier[J]. Optics Letters, 34, 2075-2077(2009).

    [50] Ricaud S, Druon F, Papadopoulos D N et al. Diode-pumped Yb∶CaF2 regenerative amplifier[J]. Proceedings of SPIE, 7912, 79120S(2011). http://proceedings.spiedigitallibrary.org/mobile/proceeding.aspx?articleid=1349141

    [51] Caracciolo E, Kemnitzer M, Guandalini A et al. Multi-kHz, high energy, femtosecond diode-pumped Yb∶CaF2 regenerative amplifier[C]. //CLEO: Science and Innovations 2014, June 8-13, 2014, San Jose, California., STh4E, 2(2014).

    [52] Sevillano P, Camy P, Doualan J L et al. Fiber laser pumped Yb∶CaF2 regenerative amplifier delivering 130 fs pulses with 4.3 W output power[C]. //2017 Conference on Lasers and Electro--Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich, Germany.(2017).

    [53] Caracciolo E, Kemnitzer M, Guandalini A et al. 28-W, 217 fs solid-state Yb∶CAlGdO4 regenerative amplifiers[J]. Optics Letters, 38, 4131-4133(2013).

    [54] Caracciolo E, Guandalini A, Pirzio F et al. High power Yb∶CALGO ultrafast regenerative amplifier for industrial application[J]. Proceedings of SPIE, 1008, 100821F(2017).

    [55] Pouysegur J, Delaigue M, Zaouter Y et al. Sub-100-fs Yb∶CALGO nonlinear regenerative amplifier[J]. Optics Letters, 38, 5180-5183(2013).

    [56] Calendron A L. Dual-crystal Yb∶CALGO high power laser and regenerative amplifier[J]. Optics Express, 21, 26174-26181(2013).

    [57] Rudenkov A S, Kisel V, Matrosov V et al. 200 kHz 5.5 W Yb 3+∶YVO4-based chirped-pulse regenerative amplifier[J]. Optics Letters, 40, 3352-3355(2015). http://www.ncbi.nlm.nih.gov/pubmed/26176467

    [58] Rudenkov A S, Kisel V, Yasukevich A S et al. Yb 3+∶CaYAlO4-based chirped pulse regenerative amplifier[J]. Optics Letters, 41, 2249-2252(2016).

    [59] Rudenkov A S, Kisel V E, Yasukevich A S et al. Yb∶CALYO-based femtosecond chirped pulse regenerative amplifier for temporally resolved pump-probe spectroscopy[J]. Devices and Methods of Measurements, 9, 205-214(2018). http://www.researchgate.net/publication/327713925_YbCALYO-based_femtosecond_chirped_pulse_regenerative_amplifier_for_temporally_resolved_pump-probe_spectroscopy

    [60] Rudenkov A S, Kisel V E, Yasukevich A et al. Yb 3+∶LuAlO3 crystal as a gain medium for efficient broadband chirped pulse regenerative amplification[J]. Optics Letters, 42, 2415-2418(2017). http://dx.doi.org/10.1364/ol.42.002415

    [61] Rudenkov A S, Kisel V E, Gorbachenya K N et al. Growth, spectroscopy and high power laser operation of Yb∶YAl3(BO3)4 crystal: continuous-wave, mode-locking and chirped pulse regenerative amplification[J]. Optical Materials, 89, 261-267(2019).

    [62] Pirzio F, Caracciolo E, Kemnitzer M et al. Performance of Yb∶Sc2SiO5 crystal in diode-pumped femtosecond oscillator and regenerative amplifier[J]. Optics Express, 23, 13115-13120(2015). http://www.ncbi.nlm.nih.gov/pubmed/26074564

    [63] Caracciolo E, Pirzio F, Kemnitzer M et al. 42 W femtosecond Yb∶Lu2O3 regenerative amplifier[J]. Optics Letters, 41, 3395-3398(2016).

    [64] Huynh J, Smrž M, Miura T et al. Femtosecond Yb∶YGAG ceramic slab regenerative amplifier[J]. Optical Materials Express, 8, 615-621(2018).

    [65] Moran B D, Brent Dane C, Crane J K et al. Suppression of parasitics and pencil beams in the high-gain national ignition facility multipass preamplifier[J]. Proceedings of SPIE, 3264, 56-64(1998).

    [66] Zhang Z G[M]. Femtosecond laser technology (optics and photonics series)(2011).

    [67] Stuart B C, Feit M D, Rubenchik A M et al. Laser-induced damage in dielectrics with nanosecond-to-subpicosecond pulses[J]. Physical Review Letters, 74, 2248-2251(1994).

    [68] Huang Y X. Study on slab laser amplifiers thermal effect influence of transmission characteristics[D]. Chengdu: Southwest Jiaotong University(2012).

    [69] Negel J P, Voss A, Ahmed M A et al. 1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses[J]. Optics Letters, 38, 5442-5445(2013).

    [70] Russbueldt P, Mans T, Weitenberg J et al. Compact diode-pumped 1.1 kW Yb∶YAG Innoslab femtosecond amplifier[J]. Optics Letters, 35, 4169-4171(2010).

    [71] Schulz M, Riedel R, Willner A et al. Yb∶YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification[J]. Optics Letters, 36, 2456-2458(2011).

    [72] Zhao Z G, Cong Z H, Liu Z J. Review on ultrashort pulse laser amplifiers based on bulk Yb-doped gain media[J]. Laser & Optoelectronics Progress, 57, 071605(2020).

    [73] Sun R Y, Jin D C, Tan F Z et al. High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating[J]. Optics Express, 24, 22806-22812(2016).

    [74] Müller M, Kienel M, Klenke A et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 41, 3439-3442(2016). http://dx.doi.org/10.1364/ol.41.003439

    [75] Yan D Y, Liu B W, Song H Y et al. Research status and development trend of high power femtosecond fiber laser amplifiers[J]. Chinese Journal of Lasers, 46, 0508012(2019).

    [76] Eidam T, Wirth C, Jauregui C et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 19, 13218-13224(2011).

    [77] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 19, 10180-10192(2011).

    [78] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).

    [79] Wang T, Zhang J, Zhang N et al. Research progress in preparation of single crystal fiber and fiber lasers[J]. Laser & Optoelectronics Progress, 56, 170611(2019).

    [80] Délen X, Piehler S, Didierjean J et al. 250 W single-crystal fiber Yb∶YAG laser[J]. Optics Letters, 37, 2898-2900(2012).

    [81] Zaouter Y, Martial I, Aubry N et al. Direct amplification of ultrashort pulses in μ-pulling-down Yb∶YAG single crystal fibers[J]. Optics Letters, 36, 748-750(2011).

    [82] Délen X, Zaouter Y, Martial I et al. Yb∶YAG single crystal fiber power amplifier for femtosecond sources[J]. Optics Letters, 38, 109-111(2013).

    [83] Markovic V, Rohrbacher A, Hofmann P et al. 160 W 800 fs Yb∶YAG single crystal fiber amplifier without CPA[J]. Optics Express, 23, 25883-25888(2015).

    [84] Li F, Yang Z, Lv Z et al. Hybrid CPA system comprised by fiber-silicate glass fiber-single crystal fiber with femtosecond laser power more than 90 W at 1 MHz[J]. Optics & Laser Technology, 129, 106291(2020). http://www.sciencedirect.com/science/article/pii/S0030399220304965

    [85] Kienel M, Müller M, Demmler S et al. Coherent beam combination of Yb∶YAG single-crystal rod amplifiers[J]. Optics Letters, 39, 3278-3281(2014). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-39-11-3278

    [86] Pouysegur J, Weichelt B, Guichard F et al. Simple Yb∶YAG femtosecond booster amplifier using divided-pulse amplification[J]. Optics Express, 24, 9896-9904(2016). http://dx.doi.org/10.1364/oe.24.009896

    [87] Lesparre F, Gomes J T, Délen X et al. Yb∶YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Optics Letters, 41, 1628-1631(2016). http://www.ncbi.nlm.nih.gov/pubmed/27192304

    [88] Liu Z J, Gao X B, Cong Z H et al. Crystal fiber and crystal-derived fiber preparation and application: a review[J]. Acta Photonica Sinica, 48, 1148003(2019).

    [89] Rodin A M, Zopelis E. Comparison of Yb∶YAG single crystal fiber with larger aperture CPA pumped at 940 nm and 969 nm[C]. //2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), July 31-August 4, 2017, Singapore.(2017).

    [90] Kuznetsov I, Mukhin I, Palashov O et al. Thin-rod Yb∶YAG amplifiers for high average and peak power lasers[J]. Optics Letters, 43, 3941-3944(2018).

    [91] Veselis L, Bartulevicius T, Madeikis K et al. Compact 20 W femtosecond laser system based on fiber laser seeder, Yb∶YAG rod amplifier and chirped volume Bragg grating compressor[J]. Optics Express, 26, 31873-31879(2018). http://www.researchgate.net/publication/329050767_Compact_20_W_femtosecond_laser_system_based_on_fiber_laser_seeder_YbYAG_rod_amplifier_and_chirped_volume_Bragg_grating_compressor

    [92] Veselis L, Bartulevicius T, Madeikis K et al. Generation of 40 W, 400 fs pulses at 1 MHz repetition rate from efficient, room temperature Yb∶YAG double-pass amplifier seeded by fiber CPA system[J]. Proceedings of SPIE, 1125, 1125925(2020). http://www.researchgate.net/publication/339423998_Generation_of_40_W_400_fs_pulses_at_1_MHz_repetition_rate_from_efficient_room_temperature_YbYAG_double-pass_amplifier_seeded_by_fiber_CPA_system

    [93] Kim J W, Sall E, Lee B et al. 8 W 240 fs diode-pumped Yb∶Y2O3 ceramic thin-rod femtosecond amplifier[J]. Optics Express, 27, 31418-31424(2019). http://www.researchgate.net/publication/336574507_8_W_240_fs_diode-pumped_YbY_2_O_3_ceramic_thin-rod_femtosecond_amplifier

    [94] Hemmer M, Reichert F, Zapata K et al. Picosecond, 115 mJ energy, 200 Hz repetition rate cryogenic Yb∶YAG bulk-amplifier[C]. ]//2015 Conference on Lasers and Electro-Optics (CLEO), May 10-15, 2015, San Jose, CA, USA.(2015).

    [95] Mackonis P, Rodin A M. Laser with 1.2 ps, 20 mJ pulses at 100 Hz based on CPA with a low doping level Yb∶YAG rods for seeding and pumping of OPCPA[J]. Optics Express, 28, 1261-1268(2020). http://www.researchgate.net/publication/338123551_Laser_with_12_ps_20_mJ_pulses_at_100_Hz_based_on_CPA_with_a_low_doping_level_YbYAG_rods_for_seeding_and_pumping_of_OPCPA

    [96] Chang C L, Krogen P, Liang H et al. Multi-mJ, kHz, ps deep-ultraviolet source[J]. Optics Letters, 40, 665-668(2015).

    [97] Rand D, Miller D, Ripin D J et al. Cryogenic Yb 3+-doped materials for pulsed solid-state laser applications[J]. Optical Materials Express, 1, 434-450(2011).

    [98] Rand D A, Shaw S E, Ochoa J R et al. Picosecond pulses from a cryogenically cooled, composite amplifier using Yb∶YAG and Yb∶GSAG[J]. Optics Letters, 36, 340-342(2011).

    [99] Zapata L E, Reichert F, Hemmer M et al. 250 W average power, 100 kHz repetition rate cryogenic Yb∶YAG amplifier for OPCPA pumping[J]. Optics Letters, 41, 492-495(2016).

    [100] Demirbas U, Cankaya H, Thesinga J et al. Efficient, diode-pumped, high-power (>300 W) cryogenic Yb∶YLF laser with broad-tunability (995--1020.5 nm): investigation of E∥a-axis for lasing[J]. Optics Express, 27, 36562-36579(2019). http://www.researchgate.net/publication/337682908_Efficient_diode-pumped_high-power_300W_cryogenic_YbYLF_laser_with_broad-tunability_995-10205_nm_investigation_of_Ea-axis_for_lasing

    [101] Cankaya H, Cankaya H, Cankaya H et al. 190-mJ cryogenically-cooled Yb∶YLF amplifier system at 1019.7 nm[J]. OSA Continuum, 2, 3547-3553(2019). http://www.researchgate.net/publication/337919861_190-mJ_cryogenically-cooled_YbYLF_amplifier_system_at_10197_nm

    [102] Chen L H, Yang G W, Liu Y X. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 47, 0500001(2020).

    [103] Volkov M R, Kuznetsov I I, Mukhin I B et al. Thin-rod active elements for amplification of femtosecond pulses[J]. Quantum Electronics, 49, 350-353(2019). http://www.researchgate.net/publication/332145143_Thinrod_active_elements_for_amplifying_femtosecond_pulses

    [104] Kaksis E, Almási G, Fülöp J A et al. 110-mJ 225-fs cryogenically cooled Yb∶CaF2 multipass amplifier[J]. Optics Express, 24, 28915-28922(2016).

    Chuan Bai, Wenlong Tian, Geyang Wang, Li Zhen, Rui Xu, Dacheng Zhang, Zhaohua Wang, Jiangfeng Zhu, Zhiyi Wei. Progress on Yb-Doped All-Solid-State Femtosecond Laser Amplifier with High Repetition Rate[J]. Chinese Journal of Lasers, 2021, 48(5): 0501005
    Download Citation