[1] A. Forbes. Structured light from lasers. Laser Photon. Rev., 13, 1900140(2019).
[2] C. He, Y. Shen, A. Forbes. Towards higher-dimensional structured light. Light Sci. Appl., 11, 205(2022).
[3] K. Y. Bliokh, E. Karimi, M. J. Padgett. Roadmap on structured waves. J. Opt., 25, 103001(2023).
[4] S. Karaveli, R. Zia. Spectral tuning by selective enhancement of electric and magnetic dipole emission. Phys. Rev. Lett., 106, 193004(2011).
[5] F. T. Rabouw, P. T. Prins, D. J. Norris. Europium-doped NaYF4 nanocrystals as probes for the electric and magnetic local density of optical states throughout the visible spectral range. Nano Lett., 16, 7254-7260(2016).
[6] B. Reynier, E. Charron, O. Markovic. Full control of electric and magnetic light–matter interactions through a nanomirror on a near-field tip. Optica, 10, 841-845(2023).
[7] M. Sanz-Paz, C. Ernandes, J. U. Esparza. Enhancing magnetic light emission with all-dielectric optical nanoantennas. Nano Lett., 18, 3481-3487(2018).
[8] R. Hussain, S. S. Kruk, C. E. Bonner. Enhancing Eu3+ magnetic dipole emission by resonant plasmonic nanostructures. Opt. Lett., 40, 1659-1662(2015).
[9] M. Montagnac, Y. Brûlé, A. Cuche. Control of light emission of quantum emitters coupled to silicon nanoantenna using cylindrical vector beams. Light Sci. Appl., 12, 239(2023).
[10] E. M. Purcell, H. C. Torrey, R. V. Pound. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev., 69, 37-38(1946).
[11] M. Veysi, C. Guclu, F. Capolino. Vortex beams with strong longitudinally polarized magnetic field and their generation by using metasurfaces. J. Opt. Soc. Am. B, 32, 345-354(2015).
[12] A. Bashiri, A. Vaskin, K. Tanaka. Color routing of the emission from magnetic and electric dipole transitions of Eu3+ by broken-symmetry TiO2 metasurfaces. ACS Nano, 18, 506-514(2024).
[13] R. Martín-Hernández, H. Hu, A. Baltuska. Fourier-limited attosecond pulse from high harmonic generation assisted by ultrafast magnetic fields. Ultrafast Sci., 3, 0036(2023).
[14] M. Chekhova, P. Banzer. Polarization of Light: In Classical, Quantum, and Nonlinear Optics(2021).
[15] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1, 1-57(2009).
[16] H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry. Roadmap on structured light. J. Opt., 19, 013001(2017).
[17] Y. Shen, Q. Zhan, L. G. Wright. Roadmap on spatiotemporal light fields. J. Opt., 25, 093001(2023).
[18] M. Veysi, C. Guclu, F. Capolino. Focused azimuthally polarized vector beam and spatial magnetic resolution below the diffraction limit. J. Opt. Soc. Am. B, 33, 2265-2277(2016).
[19] J. R. Zurita-Sánchez, L. Novotny. Multipolar interband absorption in a semiconductor quantum. II. Magnetic dipole enhancement. J. Opt. Soc. Am. B, 19, 2722-2726(2002).
[20] P. Woźniak, P. Banzer. Single nanoparticle real and k-space spectroscopy with structured light. New J. Phys., 23, 103013(2021).
[21] J. Zeng, F. Huang, C. Guclu. Sharply focused azimuthally polarized beams with magnetic dominance: near-field characterization at nanoscale by photoinduced force microscopy. ACS Photon., 5, 390-397(2018).
[22] I. Rajapaksa, K. Uenal, H. K. Wickramasinghe. Image force microscopy of molecular resonance: a microscope principle. Appl. Phys. Lett., 97, 073121(2010).
[23] L. Sánchez-Tejerina, R. Martín-Hernández, R. Yanes. All-optical non-linear chiral ultrafast magnetization dynamics driven by circularly polarized magnetic fields. High Power Laser Sci. Eng., 11, e82(2023).
[24] M. Burresi, D. Van Oosten, T. Kampfrath. Probing the magnetic field of light at optical frequencies. Science, 326, 550-553(2009).
[25] T. H. Taminiau, S. Karaveli, N. F. van Hulst. Quantifying the magnetic nature of light emission. Nat. Commun., 3, 979(2012).
[26] S. Bernadotte, A. J. Atkins, C. R. Jacob. Origin-independent calculation of quadrupole intensities in X-ray spectroscopy. J. Chem. Phys., 137, 204106(2012).
[27] M. Kasperczyk, S. Person, D. Ananias. Excitation of magnetic dipole transitions at optical frequencies. Phys. Rev. Lett., 114, 163903(2015).
[28] C. J. Foot. Oxford Master Series in Atomic, Optical and Laser Physics. Atomic Physics, 7(2005).
[29] O. Laporte, W. F. Meggers. Some rules of spectral structure. J. Opt. Soc. Am., 11, 459-463(1925).
[30] W. W. Parson. Modern Optical Spectroscopy(2015).
[31] D. J. Clouthier, D. A. Ramsay. The spectroscopy of formaldehyde and thioformaldehyde. Annu. Rev. Phys. Chem., 34, 31-58(1983).
[32] M. Klessinger, J. Michl. Excited States and Photochemistry of Organic Molecules(1995).
[33] J. R. Platt. Classification of spectra of cata-condensed hydrocarbons. J. Chem. Phys., 17, 484-495(1949).
[34] R. R. Valiev, G. V. Baryshnikov, D. Sundholm. Relations between the aromaticity and magnetic dipole transitions in the electronic spectra of hetero[8]circulenes. Phys. Chem. Chem. Phys., 20, 30239-30246(2018).
[35] W. Mason. Magnetic circular dichroism. Comprehensive Coordination Chemistry II, 327-337(2003).
[36] S. Rassou, A. Bourdier, M. Drouin. Influence of a strong longitudinal magnetic field on laser wakefield acceleration. Phys. Plasmas, 22, 073104(2015).
[37] P. Korneev, V. Tikhonchuk, E. d’Humières. Magnetization of laser-produced plasma in a chiral hollow target. New J. Phys., 19, 033023(2017).
[38] J. Vieira, S. F. Martins, V. B. Pathak. Magnetic control of particle injection in plasma based accelerators. Phys. Rev. Lett., 106, 225001(2011).
[39] F. Huang, V. Ananth Tamma, Z. Mardy. Imaging nanoscale electromagnetic near-field distributions using optical forces. Sci. Rep., 5, 10610(2015).
[40] B. Hecht, B. Sick, U. P. Wild. Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys., 112, 7761-7774(2000).
[41] F. Zenhausern, Y. Martin, H. K. Wickramasinghe. Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution. Science, 269, 1083-1085(1995).
[42] M. R. Beversluis, L. Novotny, S. J. Stranick. Programmable vector point-spread function engineering. Opt. Express, 14, 2650-2656(2006).
[43] V. G. Shvedov, C. Hnatovsky, N. Shostka. Generation of vector bottle beams with a uniaxial crystal. J. Opt. Soc. Am. B, 30, 1-6(2013).
[44] A. Turpin, Yu. V. Loiko, A. Peinado. Polarization tailored novel vector beams based on conical refraction. Opt. Express, 23, 5704-5715(2015).
[45] T. Hirayama, Y. Kozawa, T. Nakamura. Generation of a cylindrically symmetric, polarized laser beam with narrow linewidth and fine tunability. Opt. Express, 14, 12839-12845(2006).
[46] M. Beresna, M. Gecevičius, P. G. Kazansky. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [invited]. Opt. Mater. Express, 1, 783-795(2011).
[47] B. Alonso, I. Lopez-Quintas, W. Holgado. Complete spatiotemporal and polarization characterization of ultrafast vector beams. Commun. Phys., 3, 151(2020).
[48] C. Hernández-García, A. Turpin, J. San Román. Extreme ultraviolet vector beams driven by infrared lasers. Optica, 4, 520-526(2017).
[49] M. Blanco, F. Cambronero, M. T. Flores-Arias. Ultraintense femtosecond magnetic nanoprobes induced by azimuthally polarized laser beams. ACS Photon., 6, 38-42(2019).
[50] S. Sederberg, F. Kong, P. B. Corkum. Tesla-scale terahertz magnetic impulses. Phys. Rev. X, 10, 011063(2020).
[51] Y. Yang, H. T. Dai, X. W. Sun. Split ring aperture for optical magnetic field enhancement by radially polarized beam. Opt. Express, 21, 6845-6850(2013).
[52] T. Grosjean, M. Mivelle, F. I. Baida. Diabolo nanoantenna for enhancing and confining the magnetic optical field. Nano Lett., 11, 1009-1013(2011).
[53] M. Pancaldi, P. Vavassori, S. Bonetti. Terahertz metamaterials for light-driven magnetism. arXiv(2023).
[54] R. A. Fonseca, L. O. Silva, F. S. Tsung. OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. International Conference on Computational Science, 342-351(2002).
[55] R. A. Fonseca, S. F. Martins, L. O. Silva. One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations. Plasma Phys. Controlled Fusion, 50, 124034(2008).
[56] R. A. Fonseca, J. Vieira, F. Fiuza. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators. Plasma Phys. Controlled Fusion, 55, 124011(2013).
[57] D. J. Griffiths. Introduction to Electrodynamics(2017).
[58] J. D. Jackson. Classical Electrodynamics(1999).
[59] B. Bihari, H. Eilers, B. M. Tissue. Spectra and dynamics of monoclinic Eu2O3 and Eu3+:Y2O3 nanocrystals. J. Lumin., 75, 1-10(1997).
[60] K. Binnemans. Interpretation of europium(III) spectra. Coord. Chem. Rev., 295, 1-45(2015).
[61] J. M. Dawson. Particle simulation of plasmas. Rev. Mod. Phys., 55, 403-447(1983).
[62] C. K. Birdsall, A. B. Langdon. Plasma Physics via Computer Simulation(2004).
[63] J. Derouillat, A. Beck, F. Pérez. SMILEI: a collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Comput. Phys. Commun., 222, 351-373(2018).
[64] J. Siegel, O. Lyutakov, V. Rybka. Properties of gold nanostructures sputtered on glass. Nanoscale Res. Lett., 6, 96(2011).
[65] D. Gall. Electron mean free path in elemental metals. J. Appl. Phys., 119, 085101(2016).
[66] J. Krüger, D. Dufft, R. Koter. Femtosecond laser-induced damage of gold films. Appl. Surf. Sci., 253, 7815-7819(2007).
[67] A. N. Koya, M. Romanelli, J. Kuttruff. Advances in ultrafast plasmonics. Appl. Phys. Rev., 10, 021318(2023).
[68] K. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag., 14, 302-307(1966).
[69] J.-L. Vay. A new absorbing layer boundary condition for the wave equation. J. Comput. Phys., 165, 511-521(2000).
[70] L. Grünewald, R. Martín-Hernández, L. Sánchez-Tejerina San José. SI tailored metallic nanoantennas. Zenodo(2023).
[71] J. Cunha, T.-L. Guo, G. Della Valle. Controlling light, heat, and vibrations in plasmonics and phononics. Adv. Opt. Mater., 8, 2001225(2020).
[72] M. Kim, N. Park, H. J. Lee. The latest trends in nanophotonics. Nanophotonics, 11, 2389-2392(2022).
[73] S. Kurtz, T. Perry. A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys., 39, 3798-3813(1968).
[74] H. Kollmann, X. Piao, M. Esmann. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas. Nano Lett., 14, 4778-4784(2014).
[75] D. T. Schoen, T. Coenen, F. J. García De Abajo. The planar parabolic optical antenna. Nano Lett., 13, 188-193(2013).
[76] P. Li, S. Chen, H. Dai. Recent advances in focused ion beam nanofabrication for nanostructures and devices: fundamentals and applications. Nanoscale, 13, 1529-1565(2021).
[77] H. Penketh, J. Bertolotti, W. L. Barnes. Optimal position of an emitter in a wavelength-scale parabolic reflector. Appl. Opt., 58, 7957-7961(2019).
[78] M. I. Stockman. Nanoplasmonics: past, present, and glimpse into future. Opt. Express, 19, 22029(2011).
[79] N. Vladov, J. Segal, S. Ratchev. Apparent beam size definition of focused ion beams based on scanning electron microscopy images of nanodots. J. Vac. Sci. Technol. B, 33, 041803(2015).
[80] A. C. Madison, J. S. Villarrubia, K.-T. Liao. Unmasking the resolution–throughput tradespace of focused-ion-beam machining. Adv. Funct. Mater., 32, 2111840(2022).
[81] C. Cohen-Tannoudji, B. Diu, F. Laloë. Quantenmechanik. Band 2(2019).