• Journal of Atmospheric and Environmental Optics
  • Vol. 15, Issue 6, 402 (2020)
Yan Chen1、2、*, Weigang Wang1、2, Mingyuan Liu1、2, and Maofa Ge1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2020.06.001 Cite this Article
    Chen Yan, Wang Weigang, Liu Mingyuan, Ge Maofa. Measurement Technologies of Nanoparticle Chemical Composition and Their Application[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 402 Copy Citation Text show less
    References

    [1] Heal M R, Kumar P, Harrison R M. Particles, air quality, policy and health[J]. Chemical Society Reviews, 2012, 41(19): 6606-6630.

    [2] Hu D W, Chen J M, Ye X N, et al. Hygroscopicity and evaporation of ammonium chloride and ammonium nitrate: Relative humidity and size effects on the growth factor[J]. Atmospheric Environment, 2011, 45(14): 2349-2355.

    [3] Warheit D B, Sayes C M, Reed K L, et al. Health effects related to nanoparticle exposures: Environmental, health and safety considerations for assessing hazards and risks[J]. Pharmacology & therapeutics, 2008, 120(1): 35-42.

    [4] Kerminen V M, Chen X M, Vakkari Ville, et al. Atmospheric new particle formation and growth: Review of field observations[J]. Environmental Research Letters, 2018, 13(10): 103003.

    [5] Kumar P, Pirjola L, Ketzel M, et al. Nanoparticle emissions from 11 non-vehicle exhaust sources-A review[J]. Atmospheric Environment, 2013, 67: 252-277.

    [6] Liu P, Ziemann P J, Kittelson D B, et al. Generating particle beams of controlled dimensions and divergence: I. theory of particle motion in aerodynamic lenses and nozzle expansions[J]. Aerosol Science and Technology, 1995, 22(3): 293-313.

    [7] Liu P, Ziemann P J, Kittelson D B, et al. Generating particle beams of controlled dimensions and divergence: II. experimental evaluation of particle motion in aerodynamic lenses and nozzle expansions[J]. Aerosol Science and Technology, 1995,22(3): 314-324.

    [8] Wang X L, Kruis F E, Mcmurry P H. Aerodynamic focusing of nanoparticles: I. guidelines for designing aerodynamic lenses for nanoparticles[J]. Aerosol Science and Technology, 2005, 39(7): 611-623.

    [9] Wang X L, Gidwani A, Girshick S L, et al. Aerodynamic focusing of nanoparticles: II. numerical simulation of particle motion through aerodynamic lenses[J]. Aerosol Science and Technology, 2005, 39(7): 624-636.

    [10] Lee K S, Kim S, Lee D. Aerodynamic focusing of 5-50nm nanoparticles in air[J]. Journal of Aerosol Science, 2009, 40(12): 1010-1018.

    [11] Jayne J T, Leard D C, Zhang X F, et al. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles[J]. Aerosol Science & Technology, 2000, 33(1): 49-70.

    [12] Decarlo P F, Kimmel J R, Trimborn A, et al. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer[J]. Analytical Chemistry, 2006, 78(24): 8281-8289.

    [13] Kenseth C M, Petrucci G A. Characterization of a bipolar near-infrared laser desorption/ionization aerosol mass spectrometer[J]. Aerosol Science and Technology, 2016, 50(8): 790-801.

    [14] Li Y J, Sun Y L, Zhang Q, et al. Real-time chemical characterization of atmospheric particulate matter in China: A review[J]. Atmospheric Environment, 2017, 158: 270-304.

    [15] Zelenyuk A, Imre D, Wilson J, et al. Airborne single particle mass spectrometers (SPLAT II & miniSPLAT) and new software for data visualization and analysis in a geo-spatial context[J]. Journal of the American Society for Mass Spectrometry,2015, 26(2): 257-270.

    [16] Zelenyuk A, Yang J, Imre D. Comparison between mass spectra of individual organic particles generated by UV laser ablation and in the IR/UV two-step mode[J]. International Journal of Mass Spectrometry, 2009, 282(1-2): 6-12.

    [17] Zelenyuk A, Yang J, Imre D, et al. Achieving size independent hit-rate in single particle mass spectrometry[J]. Aerosol Science and Technology, 2009, 43(4): 305-310.

    [18] Zauscher M D, Moore M J, Lewis G S, et al. Approach for measuring the chemistry of individual particles in the size range critical for cloud formation[J]. Analytical Chemistry, 2011, 83(6): 2271-2278.

    [19] Voisin D, Smith J N, Sakurai H, et al. Thermal desorption chemical ionization mass spectrometer for ultrafine particle chemical composition[J]. Aerosol Science and Technology, 2003, 37(6): 471-475.

    [20] Zhang R Y, Wang L, Khalizov A F, et al. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution[J]. Proceedings of the National Academy of Sciences, 2009, 106(42): 17650.

    [21] Chen X T, Jiang J K, Chen D R. A soft X-ray unipolar charger for ultrafine particles[J]. Journal of Aerosol Science, 2019, 133: 66-71.

    [22] Kreisberg N M, Spielman S R, Eiguren-Fernandez A, et al. Water condensation-based nanoparticle charging system: Physical and chemical characterization[J]. Aerosol Science and Technology, 2018, 52(10): 1167-1177.

    [23] Yuan B., Koss A R, Warneke C, et al. Proton-transfer-reaction mass spectrometry: Applications in atmospheric sciences[J]. Chemical Reviews, 2017, 117(21): 13187-13229.

    [24] Zhao R. The recent development and application of chemical ionization mass spectrometry in atmospheric chemistry[J]. In Encyclopedia of Analytical Chemistry, 2018, 1-33.

    [25] Wang S Y, Zordan C A, Johnston M V. Chemical characterization of individual, airborne sub-10-nm particles and molecules[J]. Analytical Chemistry, 2006, 78(6): 1750-1754.

    [26] Wang S Y, Johnston M V. Airborne nanoparticle characterization with a digital ion trap-reflectron time of flight mass spectrometer[J]. International Journal of Mass Spectrometry, 2006, 258(1-3): 50-57.

    [27] Horan A J, Krasnomowitz J M, Johnston M V. Particle size and chemical composition effects on elemental analysis with the nano aerosol mass spectrometer[J]. Aerosol Science and Technology, 2017, 51(10): 1135-1143.

    [28] Johnston M V, Wang S Y, Reinard M S. Nanoparticle mass spectrometry: Pushing the limit of single particle analysis[J]. Applied spectroscopy, 2006, 60(10): 264A-272A.

    [29] Laitinen T, Hartonen K, Kuimaia M, et al. Aerosol time-of-flight mass spectrometer for measuring ultrafine aerosol particles[J]. Boreal Environment Research, 2009, 14(4): 539-549.

    [30] Gonser S, Held A. A chemical analyzer for charged ultrafine particles[J]. Atmospheric Measurement Techniques, 2013, 6(9): 2339.

    [31] He S, Li L, Duan H, et al. Aerosol analysis via electrostatic precipitation-electrospray ionization mass spectrometry[J]. Analytical Chemistry, 2015, 87(13): 6752-6760.

    [32] Wagner A C, Bergen A, Brilke S, et al. Size-resolved online chemical analysis of nanoaerosol particles: A thermal desorption differential mobility analyzer coupled to a chemical ionization time-of-flight mass spectrometer[J]. Atmospheric Measurement Techniques, 2018, 11(10): 5489-5506.

    [33] Chen H, Venter A, Cooks R G. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation[J]. Chemical Communications, 2006, 19: 2042-2044.

    [34] Gallimore P J, Kalberer M. Characterizing an extractive electrospray ionization (EESI) source for the online mass spectrometry analysis of organic aerosols[J]. Environmental Science & Technology, 2013, 47(13): 7324-7331.

    [35] Lopez-Hilfiker F D, Pospisilova V, Huang W, et al. An extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) for online measurement of atmospheric aerosol particles[J]. Atmospheric Measurement Techniques, 2019, 12(9): 4867-4886.

    [36] Horan A J, Apsokardu M J, Johnston M V. Droplet assisted inlet ionization for online analysis of airborne nanoparticles[J]. Analytical Chemistry, 2017, 89(2): 1059-1062.

    [37] Zhao J, Eisele F L, Titcombe M, et al. Chemical ionization mass spectrometric measurements of atmospheric neutral clusters using the cluster-CIMS[J]. Journal of Geophysical Research, 2010, 115: D08205.

    [38] Jiang J K, Zhao J, Chen M D, et al. First measurements of neutral atmospheric cluster and 1-2 nm particle number size distributions during nucleation events[J]. Aerosol Science and Technology, 2011, 45(4): ii-v.

    [39] Lei T, Ma N, Hong J, et al. Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10 nm aerosol nanoparticles[J]. Atmospheric Measurement Techniques, 2020, 2020: 1-48.

    [40] Wang Z, Su H, Wang X, et al. Scanning supersaturation condensation particle counter applied as a nano-CCN counter for size-resolved analysis of the hygroscopicity and chemical composition of nanoparticles[J]. Atmospheric Measurement Techniques, 2015, 8(5): 2161-2172.

    [41] Li W J, Xu L, Liu X H, et al. Air pollution-aerosol interactions produce more bioavailable iron for ocean ecosystems[J]. Science Advances, 2017, 3(3): e1601749.

    [42] Mkel J M, Hoffmann T, Holzke C, et al. Biogenic iodine emissions and identification of end-products in coastal ultrafine particles during nucleation bursts[J]. Journal of Geophysical Research, 2002, 107(D19), doi:10.1029/2001JD000580.

    [43] Chen Y Z, Shah N, Huggins F E, et al. Characterization of ambient airborne particles by energy-filtered transmission electron microscopy[J]. Aerosol Science and Technology, 2005, 39(6): 509-518.

    [44] Huang D, Hua X, Xiu G L, et al. Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter[J]. Analytica Chimica Acta, 2017, 989: 1-14.

    [45] Hoppe P. NanoSIMS: A new tool in cosmochemistry[J]. Applied Surface Science, 2006, 252(19): 7102-7106.

    [46] Dazzi A, Prater C B, Hu Q C, et al. AFM-IR: Combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization[J]. Applied spectroscopy, 2012, 66(12): 1365-1384.

    [47] Dazzi A, Prater C B. AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging[J]. Chemical Reviews, 2017, 117(7): 5146-5173.

    [48] Shi X, Coca-Lopez N, Janik J, et al. Advances in tip-enhanced near-field raman microscopy using nanoantennas[J]. Chemical Reviews, 2017, 117(7): 4945-4960.

    [49] Gao Y, Johnston M V. Online deposition of nano-aerosol for matrix-assisted laser desorption/ionization mass spectrometry[J]. Rapid Communication Mass Spectrometry, 2009, 23(24): 3963-3968.

    [50] Smith J N, Moore K F, Mcmurry P H, et al. Atmospheric measurements of sub-20 nm diameter particle chemical composition by thermal desorption chemical ionization mass spectrometry[J]. Aerosol Science and Technology, 2004, 38(2): 100-110.

    [51] Smith J N, Moore K F, Eisele F L, et al. Chemical composition of atmospheric nanoparticles during nucleation events in Atlanta[J]. Journal of Geophysical Research-Atmospheres, 2005, 110: D22S03.

    [52] Yao L, Garmash O, Bianchi F, et al. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity[J]. Science, 2018, 361(6399): 278-281.

    [53] Klems J P, Pennington M R, Zordan C A, et al. Apportionment of motor vehicle emissions from fast changes in number concentration and chemical composition of ultrafine particles near a roadway intersection[J]. Environmental Science & Technology, 2011, 45(13): 5637-5643.

    [54] Bzdek B R, Horan A J, Pennington M R, et al. Silicon is a frequent component of atmospheric nanoparticles[J]. Environmental Science & Technology, 2014, 48(19): 11137-11145.

    [55] Lawler M J, Whitehead J, O’dowd C, et al. Composition of 15-85 nm particles in marine air[J]. Atmospheric Chemistry and Physics, 2014, 14(21): 11557-11569.

    [56] Bzdek B R, Lawler M J, Horan A J, et al. Molecular constraints on particle growth during new particle formation[J]. Geophysical Research Letters, 2014, 41(16): 6045-6054.

    [57] Bzdek B R, Horan A J, Pennington M R, et al. Quantitative and time-resolved nanoparticle composition measurements during new particle formation[J]. Faraday Discussions, 2013, 165: 25-43.

    [58] Hodshire A L, Lawler M J, Zhao J, et al. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site[J]. Atmospheric Chemistry and Physics, 2016, 16(14): 9321-9348.

    [59] Lawler M J, Rissanen M P, Ehn M, et al. Evidence for diverse biogeochemical drivers of boreal forest new particle formation[J]. Geophysical Research Letters, 2018, 45(4): 2038-2046.

    [60] Glicker H S, Lawler M J, Ortega J, et al. Chemical composition of ultrafine aerosol particles in central Amazonia during the wet season[J]. Atmospheric Chemistry and Physics, 2019, 19(20): 13053-13066.

    [61] Laitinen T, Ehn M, Junninen H, et al. Characterization of organic compounds in 10-to 50-nm aerosol particles in boreal forest with laser desorption-ionization aerosol mass spectrometer and comparison with other techniques[J]. Atmospheric Environment, 2011, 45(22): 3711-3719.

    [62] Laitinen T, Junninen H, Parshintsev J, et al. Changes in concentration of nitrogen-containing compounds in 10 nm particles of boreal forest atmosphere at snowmelt[J]. Journal of Aerosol Science, 2014, 70: 1-10.

    [63] Lawler M J, Draper D C, Smith J N. Atmospheric fungal nanoparticle bursts[J]. Science Advances, 2020, 6(3): eaax9051.

    [64] Sinha B W, Hoppe P, Huth J, et al. Sulfur isotope analyses of individual aerosol particles in the urban aerosol at a central European site (Mainz, Germany)[J]. Atmospheric Chemistry and Physics, 2008, 8(23): 7217-7238.

    [65] Ghosal S, Weber P K, Laskin A. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: Insight into particle origin and chemistry[J]. Analytical Methods, 2014, 6(8): 2444-2451.

    [66] Li K, Sinha B, Hoppe P. Speciation of nitrogen-bearing species using negative and positive secondary ion spectra with nano secondary ion mass spectrometry[J]. Analytical Chemistry, 2016, 88(6): 3281-3288.

    [67] Chen H H, Chee S, Lawler M J, et al. Size resolved chemical composition of nanoparticles from reactions of sulfuric acid with ammonia and dimethylamine[J]. Aerosol Science and Technology, 2018, 52(10): 1120-1133.

    [68] Or V W, Estillore A D, Tivanski A V, et al. Lab on a tip: Atomic force microscopy-photothermal infrared spectroscopy of atmospherically relevant organic/inorganic aerosol particles in the nanometer to micrometer size range[J]. Analyst, 2018,143(12): 2765-2774.

    Chen Yan, Wang Weigang, Liu Mingyuan, Ge Maofa. Measurement Technologies of Nanoparticle Chemical Composition and Their Application[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 402
    Download Citation