[2] Atanasova G, Dikovska A O, Dilova T, et al. Metal-oxide nanostructures produced by PLD in open air for gas sensor applications[J]. Applied Surface Science, 2019, 470: 861-869.
[4] Hazra A, Das S, Kanungo J, et al. Studies on a resistive gas sensor based on sol-gel grown nanocrystallinep-TiO2 thin film for fast hydrogen detection[J]. Sensors & Actuators B Chemical, 2013, 183(8): 87-95.
[7] Bhagaban B, Sudhir C. Synthesis of WO3 nanorods by thermal oxidation technique for NO2 gas sensing application[J]. Materials Science in Semiconductor Processing, 2018, 86: 79-84.
[8] ?ennik E, ?olak Z, K?l?n? N, et al. Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4420-4427.
[11] Zhang Y, He W, Zhao H, et al. Template-free to fabricate highly sensitive and selective acetone gas sensor based on WO3 microspheres[J]. Vacuum, 2013, 95(2): 30-34.
[13] ?ennik E, Alev O, ?ztürk Z Z. The effect of Pd on the H2 and VOC sensing properties of TiO2 nanorods[J]. Sensors & Actuators B Chemical, 2016, 229: 692-700.
[14] Rao G S T, Rao D T. Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature[J]. Sensors & Actuators B Chemical, 1999, 55(2): 166-169.
[15] Li Z, Ding D, Qiang L, et al. Ni-doped TiO2 nanotubes for wide-range hydrogen sensing[J]. Nanoscale Research Letters, 2014, 9(1): 1-9.
[17] Park S, Kim H, Jin C, et al. Enhanced CO gas sensing properties of Pt-functionalized WO3 nanorods[J]. Thermochimica Acta, 2012, 542(5): 69-73.
[18] Zhong L, Haidry A A, Tao W, et al. Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO2 structure[J]. Applied Physics Letters, 2017, 111(3): 1-10.
[20] Liu Z, Liu B, Xie W, et al. Enhanced selective acetone sensing characteristics based on Co-doped WO3 hierarchical flower-like nanostructures assembled with nanoplates[J]. Sensors & Actuators B Chemical, 2016, 235: 614-621.
[22] Salman S H, Shihab A A, Elttayef A-H K. Design and construction of nanostructure TiO2 thin film gas sensor prepared by RF magnetron sputtering technique[J]. Energy Procedia, 2019, 157: 283-289.
[23] Qi J, Hong Z, Lu S, et al. High performance Indium-Doped ZnO gas sensor[J]. Journal of Nanomaterials, 2015, 2015: 1-6.
[24] Mohammad-Yousefi S, Rahbarpour S, Ghafoorifard H. Describing the effect of Ag/Au modification on operating temperature and gas sensing properties of thick film SnO2 gas sensors by gas diffusion theory[J]. Materials Chemistry and Physics, 2019, 227: 148-156.
[25] Chen H, Hai Y, Shu C, et al. Synthesis of Ce:ZnO nanocomposites: facile synthesis and fast acetone gas sensing response properties[J]. Physica B Condensed Matter, 2017, 516: 36-40.
[26] Guo W, Liu T, Sun R, et al. Hollow, porous, and yttrium functionalized ZnO nanospheres with enhanced gas-sensing performances[J]. Sensors & Actuators B Chemical, 2013, 178(3): 53-62.
[27] Deng Z, Meng G, Fang X, et al. A novel ammonia gas sensors based on p-type delafossite AgAlO2[J]. Journal of Alloys and Compounds, 2019, 777: 52-58.
[28] Vadivel S, Balaji G, Rathinavel S . High performance ethanol and acetone gas sensor based nanocrystalline MnCo2O4 using clad-modified fiber optic gas sensor[J]. Optical Materials, 2018, 85: 267-274.
[29] Zhang G Y, Guo B, Chen J. MCo2O4 (M=Ni, Cu, Zn) nanotubes: template synthesis and application in gas sensors[J]. Sensors & Actuators B Chemical, 2006, 114(1): 402-409.
[30] Patil J Y, Nadargi D Y, Gurav J L, et al. Glycine combusted ZnFe2O4 gas sensor: evaluation of structural, morphological and gas response properties[J]. Ceramics International, 2014, 40(7): 10607-10613.
[31] Sertel B C, Sonmez N A, Kaya M D, et al. Development of MgO:TiO2 thin films for gas sensor applications[J]. Ceramics International, 2019, 45: 2927-2921.
[32] Mao L Z, Jian P S, Zhan H Y, et al. Response improvement for In2 O3-TiO2 thick film gas sensors[J]. Current Applied Physics, 2012, 12(3): 678-683.
[33] Navale Y H, Navale S T, Stadler F J, et al. Enhanced NO2 Sensing Aptness of ZnO nanowire/CuO nanoparticle heterostructure-based Gas Sensors[J]. Ceramics International, 2019, 45: 1513-1522.
[35] Zhu Y, Wang H, Liu J, et al. High-performance gas sensors based on the WO3-SnO2 nanosphere composites[J]. Journal of Alloys and Compounds, 2018, 782: 789-795.
[36] Haiduk Y S, Khort A A, Lapchuk N M, et al. Study of WO3-In2O3 nanocomposites for highly sensitive CO and NO2 gas sensors[J]. Journal of Solid State Chemistry, 2019, 273: 25-31.
[39] Srinivasulu Kanaparthi, Shiv Govind Singh. Highly sensitive and ultra-fast responsive ammonia gas sensor based on 2D ZnO nanoflake[J]. Materials Science for Energy Technologies, 2020, 3: 91-96.