• Journal of the Chinese Ceramic Society
  • Vol. 50, Issue 2, 457 (2022)
MU Yuandong1,2,3,*, LIU Zhichao1,2, and WANG Fazhou1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    MU Yuandong, LIU Zhichao, WANG Fazhou. Carbonation Kinetics of γ-Dicalcium Silicate[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 457 Copy Citation Text show less
    References

    [1] BOUZIDI M A, TAHAKOURT A, BOUZIDI N, et al. Synthesis and characterization of belite cement with high hydraulic reactivity and low environmental impact[J]. Arab J Sci Eng, 2014, 39(12): 8659-8668.

    [2] SCRIVENER K L, KIRKPATRICK R J. Innovation in use and research on cementitious material[J]. Cem Concr Res, 2008, 38(2): 128-136.

    [3] GARTNER E, HIRAO H. A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete[J]. Cem Concr Res, 2015, 78: 126-142.

    [6] MU Y, LIU Z, WANG F. Comparative study on the carbonation- activated calcium silicates as sustainable binders: reactivity, mechanical performance, and microstructure[J]. ACS Sustain Chem Eng, 2019, 7(7): 7058-7070.

    [7] ARAI C, HOSAKA S, MURASE, et al. Measurements of the relative humidity of saturated aqueous salt solutions[J]. J Chem Eng Jpn, 1976, 9(4): 328-330.

    [8] WANG T, HUANG H, HU X, et al. Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate[J]. Chem Eng J, 2017, 323: 320-329.

    [9] ALIZADEHHESARI K, GOLDING S D, BHATIA S K. Kinetics of the dehydroxylation of serpentine[J]. Energy Fuels, 2012, 26(2): 783-790.

    [10] KASAOKA S, SAKATA Y, TONG C. Kinetic evaluation of the reactivity of various coal chars for gasification with carbon dioxide in comparison with Steam[J]. Int Chem Eng, 1985, 22: 160-175.

    [11] FANG X, XUAN D, POON C S. Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions[J]. Mater Struct, 2017, 50(4): 1-13.

    [12] KASHEF-HAGHIGHI S, SHAO Y, GHOSHAL S. Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing[J]. Cem Concr Res, 2015, 67: 1-10.

    [13] PAPADAKIS V G, FARDIS M N, VAYENAS C G. Hydration and carbonation of pozzolanic cements[J]. ACI Mater J, 1992, 89(2): 119-130.

    [14] ASHRAF W. Carbonation of cement-based materials: challenges and opportunities[J]. Constr Build Mater, 2016, 120: 558-570.

    [15] DE CEUKELAIRE L, WAN NIEUWENBURG D. Accelerated carbonation of a blast-furnace cement concrete[J]. Cem Concr Res, 1993, 23(2): 442-452.

    [16] LO T Y, TANG W C, NADEEM A. Comparison of carbonation of lightweight concrete with normal weight concrete at similar strength levels[J]. Constr Build Mater, 2008, 22(8): 1648-1655.

    [17] NEVILLE A M. Properties of Concrete[M]. London: longman, 1995.

    [18] HAYNES, WILLIAM M. CRC Handbook of Chemistry and Physics[M]. CRC Press, 2014.

    [19] CASTELLOTE M, FERNANDEZ L, ANDRADE C, et al. Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations[J]. Mater Struct, 2009, 42(4): 515-525.

    MU Yuandong, LIU Zhichao, WANG Fazhou. Carbonation Kinetics of γ-Dicalcium Silicate[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 457
    Download Citation