• Chinese Physics B
  • Vol. 29, Issue 10, (2020)
Wen-An Jiang1, Xin-Dong Ma1, Xiu-Jing Han1,†, Li-Qun Chen2,3, and Qin-Sheng Bi1
Author Affiliations
  • 1Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 2203, China
  • 2School of Science, Harbin Institute of Technology, Shenzhen 518055, China
  • 3Department of Mechanics, Shanghai University, Shanghai 200072, China
  • show less
    DOI: 10.1088/1674-1056/aba5fd Cite this Article
    Wen-An Jiang, Xin-Dong Ma, Xiu-Jing Han, Li-Qun Chen, Qin-Sheng Bi. Broadband energy harvesting based on one-to-one internal resonance[J]. Chinese Physics B, 2020, 29(10): Copy Citation Text show less

    Abstract

    We design an electromechanical transducer harvesting system with one-to-one internal resonance that can emerge a broader spectrum vibrations. The novel harvester is composed of a Duffing electrical circuit coupled to a mobile rod, and the coupling between both components is realized via the electromagnetic force. Approximate analytical solutions of the electromechanical system are carried out by introducing the multiple scales analysis, also the nonlinear modulation equation for one-to-one internal resonance is obtained. The character of broadband harvesting performance are analyzed, the two peaks and one jump phenomenon bending to the right for variation of control parameters are observed. It is shown that an advanced bandwidth over a corresponding linear model that does not possess a modal energy interchange.
    Lind1q¨+R1q˙+qC0+a3q3+lB1x˙=V0cos(Ωτ),(1)

    View in Article

    mx¨+cx˙+kxlB1q˙+B2ILcoil=0,(2)

    View in Article

    Lind2I˙+R2IB2Lcoilx˙=0,(3)

    View in Article

    VC=qC1+nVC0sinh1(q2RCi0C2),(4)

    View in Article

    VC=qC0+a3q3,(5)

    View in Article

    y¨1+ς1y˙1+y1+αy13+λ1y˙2=fcos(ωt),(6)

    View in Article

    y¨2+ς2y˙2+ηy2λ2y˙1+λ3y3=0,(7)

    View in Article

    y˙3+χy3y˙2=0,(8)

    View in Article

    (1)

    View in Article

    ζiεζi,   fεf,   αεα,   λiελi.(9)

    View in Article

    ω=1+εσ0,η=1+εσ1,(10)

    View in Article

    y1(t;ε)=y11(T0,T1)+εy12(T0,T1)+O(ε2),y2(t;ε)=y21(T0,T1)+εy22(T0,T1)+O(ε2),y3(t;ε)=y31(T0,T1)+εy32(T0,T1)+O(ε2).(11)

    View in Article

    ddt=D0+εD1+,d2dt2=D02+2εD0D1+,(12)

    View in Article

    D02y11+y11=0,D02y21+η2y21=0,D0y31+χy31=D0y21,(13)

    View in Article

    D02y12+y12=2D0D1y11ς1D0y11αy113                       λ1D0y21+fcosωt,D02y22+η2y22=2D0D1y21ς2D0y21+λ2D0y11λ3y31,D0y32+χy32=D0y22+D1y21D1y31.(14)

    View in Article

    y11=A1(T1)exp(iT0)+c.c.,y21=A2(T1)exp(iηT0)+c.c.,y31=iηA2(T1)χ+iηexp(iηT0)+B(T1)exp(χT0)+c.c.    (15)

    View in Article

    D1A1=Γ11A1+Γ12A12A¯1+Γ13A2exp[i(η1)T0]+fΓ14exp[i(ω1)T0],D1A2=Γ21A2+Γ22A1exp[i(1η)T0],(16)

    View in Article

    (1)

    View in Article

    An(T1)=12an(T1)exp[iθn(T1)].(17)

    View in Article

    D1a1=Re(Γ11)a1+14a13Re(Γ12)+a2[Re(Γ13)cosγ1Im(Γ13)sinγ1]+2f[Re(Γ14)cosγ2Im(Γ14)sinγ2],(18)

    View in Article

    D1a2=Re(Γ21)a2+a1[Re(Γ22)cosγ1+Im(Γ22)sinγ1],(19)

    View in Article

    D1γ1=σ1+Im(Γ21)a1a2[Re(Γ22)sinγ1Im(Γ22)cosγ1]Im(Γ11)14a12Im(Γ12)a2a1[Re(Γ13)sinγ1+Im(Γ13)cosγ1]2fa1[Re(Γ14)sinγ2+Im(Γ14)cosγ2],(20)

    View in Article

    D1γ2=σ0Im(Γ11)14a12Im(Γ12)a2a1[Re(Γ13)sinγ1+Im(Γ13)cosγ1]2fa1[Re(Γ14)sinγ2+Im(Γ14)cosγ2],(21)

    View in Article

    (1)

    View in Article

    0=Re(Γ11)a1+14a13Re(Γ12)+a2[Re(Γ13)cosγ1Im(Γ13)sinγ1]+2f[Re(Γ14)cosγ2Im(Γ14)sinγ2],(22)

    View in Article

    0=Re(Γ21)a2+a1[Re(Γ22)cosγ1+Im(Γ22)sinγ1],(23)

    View in Article

    0=σ1+Im(Γ21)a1a2[Re(Γ22)sinγ1Im(Γ22)cosγ1]Im(Γ11)14a12Im(Γ12)a2a1[Re(Γ13)sinγ1+Im(Γ13)cosγ1]2fa1[Re(Γ14)sinγ2+Im(Γ14)cosγ2],(24)

    View in Article

    0=σ0Im(Γ11)14a12Im(Γ12)a2a1[Re(Γ13)sinγ1+Im(Γ13)cosγ1]2fa1[Re(Γ14)sinγ2+Im(Γ14)cosγ2].(25)

    View in Article

    y3=ηχ2+η2a2.(26)

    View in Article

    (D1Δa1D1Δa2D1Δγ1D1Δγ2)T=\boldsymbolJ(Δa1Δa2Δγ1Δγ2)T,(27)

    View in Article

    Lind1q¨+R1q˙+qC0+lB1x˙=V0cos(Ωτ),(28)

    View in Article

    mx¨+cx˙+kxlB1q˙+B2ILcoil=0,(29)

    View in Article

    Lind2I˙+R2IB2Lcoilx˙=0.(30)

    View in Article

    Wen-An Jiang, Xin-Dong Ma, Xiu-Jing Han, Li-Qun Chen, Qin-Sheng Bi. Broadband energy harvesting based on one-to-one internal resonance[J]. Chinese Physics B, 2020, 29(10):
    Download Citation