[1] Stryk J, Matula R, Pospisil K, et al. Comparative measurements of ground penetrating radars used for road and bridge diagnostics in the Czech Republic and France. Construction and Building Materials, 2017, 154: 1199-1206.
[4] Liu H, Huang Z G, Yue Y P, et al. Characteristics analysis of ground penetrating radar signals for ground water pipe leakage environment. J. of Electron. & Information Technol., 2022, 44(4): 1257-1264.
[5] Harseno R W, Lee S J, Kee S H, et al. Evaluation of air-cavities behind concrete tunnel linings using GPR measurements. Remote Sensing, 2022, 14(21): 5348.
[6] Joshaghani A, Shokrabadi M. Ground penetrating radar (GPR) applications in concrete pavements. Inter. J. of Pavement Engineering, 2022, 23(13): 4504-4531.
[7] Amran T S T, Ismail M P, Ismail M A, et al. GPR application on construction foundation study// IOP Conf. Series: Materials Science and Engineering, 2017: 012089.
[8] Pan J J, Bastard C L, Wang Y D, et al. Time-delay estimation using ground-penetrating radar with a support vector regression-based linear prediction method. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56(5): 2833-2840.
[10] Thomas S B, Roy L P. Signal processing for coal layer thickness estimation using high-resolution time delay estimation methods. IET Science Measurement & Technol., 2017, 11(8): 1022-1031.
[12] Hou F F, Lei W T, Li S, et al. Deep learning-based subsurface target detection from GPR scans. IEEE Sensors J., 2021, 21(6): 8161-8171.
[13] Lin T Y, Dollr P, Girshick R, et al. Feature pyramid networks for object detection// 2017 IEEE Conf. on Computer Vision and Pattern Recognition, 2017: 936-944.
[14] Kafedziski V, Pecov S, Tanevski D. Detection and classification of land mines from ground penetrating radar data using faster R-CNN// 2018 26th Telecommunications Forum (TELFOR), 2018: 1-4.
[16] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors// 2023 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), 2023: 17-24.
[17] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations// 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), 2020: 1577-1586.
[18] Yang L, Zhang R Y, Li L, et al. SimAM: A simple, parameter-free attention module for convolutional neural networks// Proc. of the 38th Inter. Conf. on Machine Learning, 2021: 11863-11874.
[19] Liu S, Huang D, Wang Y. Receptive field block net for accurate and fast object detection// Computer Vision-ECCV 2018, 2018: 404-419.
[21] Zhang Y F, Ren W, Zhang Z, et al. Focal and efficient IOU loss for accurate bounding box regression. ArXiv, 2021, 2101: 08158. http://arxiv.org/abs/2101.08158. 89
[22] Zheng Z, Wang P, Liu W, et al. Distance-IoU Loss: Faster and better learning for bounding box regression. ArXiv, 2019, 1911: 08287. http://arxiv.org/abs/1911.0828701.