• Semiconductor Optoelectronics
  • Vol. 44, Issue 5, 767 (2023)
ZHONG Yunjie1, LI Kang1, MO Site1,*, and LI Bixiong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2023061401 Cite this Article
    ZHONG Yunjie, LI Kang, MO Site, LI Bixiong. Research on GPR Echo Image Recognition Based on GSR-YOLOv7[J]. Semiconductor Optoelectronics, 2023, 44(5): 767 Copy Citation Text show less
    References

    [1] Stryk J, Matula R, Pospisil K, et al. Comparative measurements of ground penetrating radars used for road and bridge diagnostics in the Czech Republic and FranceJ. Construction and Building Materials, 2017, 154: 1199-1206.

    [4] Liu H, Huang Z G, Yue Y P, et al. Characteristics analysis of ground penetrating radar signals for ground water pipe leakage environmentJ. J. of Electron. & Information Technol., 2022, 44(4): 1257-1264.

    [5] Harseno R W, Lee S J, Kee S H, et al. Evaluation of air-cavities behind concrete tunnel linings using GPR measurementsJ. Remote Sensing, 2022, 14(21): 5348.

    [6] Joshaghani A, Shokrabadi M. Ground penetrating radar (GPR) applications in concrete pavementsJ. Inter. J. of Pavement Engineering, 2022, 23(13): 4504-4531.

    [7] Amran T S T, Ismail M P, Ismail M A, et al. GPR application on construction foundation studyC// IOP Conf. Series: Materials Science and Engineering, 2017: 012089.

    [8] Pan J J, Bastard C L, Wang Y D, et al. Time-delay estimation using ground-penetrating radar with a support vector regression-based linear prediction methodJ. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56(5): 2833-2840.

    [10] Thomas S B, Roy L P. Signal processing for coal layer thickness estimation using high-resolution time delay estimation methodsJ. IET Science Measurement & Technol., 2017, 11(8): 1022-1031.

    [12] Hou F F, Lei W T, Li S, et al. Deep learning-based subsurface target detection from GPR scansJ. IEEE Sensors J., 2021, 21(6): 8161-8171.

    [13] Lin T Y, Dollr P, Girshick R, et al. Feature pyramid networks for object detectionC// 2017 IEEE Conf. on Computer Vision and Pattern Recognition, 2017: 936-944.

    [14] Kafedziski V, Pecov S, Tanevski D. Detection and classification of land mines from ground penetrating radar data using faster R-CNNC// 2018 26th Telecommunications Forum (TELFOR), 2018: 1-4.

    [16] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectorsC// 2023 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), 2023: 17-24.

    [17] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operationsC// 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), 2020: 1577-1586.

    [18] Yang L, Zhang R Y, Li L, et al. SimAM: A simple, parameter-free attention module for convolutional neural networksC// Proc. of the 38th Inter. Conf. on Machine Learning, 2021: 11863-11874.

    [19] Liu S, Huang D, Wang Y. Receptive field block net for accurate and fast object detectionC// Computer Vision-ECCV 2018, 2018: 404-419.

    [21] Zhang Y F, Ren W, Zhang Z, et al. Focal and efficient IOU loss for accurate bounding box regressionJ/OL. ArXiv, 2021, 2101: 0815820230614. http://arxiv.org/abs/2101.08158. 89

    [22] Zheng Z, Wang P, Liu W, et al. Distance-IoU Loss: Faster and better learning for bounding box regressionJ/OL. ArXiv, 2019, 1911: 0828720230614. http://arxiv.org/abs/1911.0828701.