• Photonics Research
  • Vol. 12, Issue 10, 2104 (2024)
Sudheesh K. Rajput1,*, Allarakha Shikder2, Naveen K. Nishchal2, Ryuju Todo3..., Osamu Matoba4,5 and Yasuhiro Awatsuji1|Show fewer author(s)
Author Affiliations
  • 1Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Kyoto 606-8585, Japan
  • 2Department of Physics, Indian Institute of Technology Patna, Bihta 801106, India
  • 3Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
  • 4Center of Optical Scattering Image Science, Kobe University, Kobe 657-850, Japan
  • 5Organization for Advanced and Integrated Research, Kobe University, Kobe 657-850, Japan
  • show less
    DOI: 10.1364/PRJ.527329 Cite this Article Set citation alerts
    Sudheesh K. Rajput, Allarakha Shikder, Naveen K. Nishchal, Ryuju Todo, Osamu Matoba, Yasuhiro Awatsuji, "Holographic acoustic-signal authenticator," Photonics Res. 12, 2104 (2024) Copy Citation Text show less
    References

    [1] O. Matoba, T. Nomura, E. Perez-Cabre. Optical techniques for information security. Proc. IEEE, 97, 1128-1148(2009).

    [2] W. Chen, B. Javidi, X. Chen. Advances in optical security systems. Adv. Opt. Photonics, 6, 120-155(2014).

    [3] B. Javidi, A. Carnicer, M. Yamaguchi. Roadmap on optical security. J. Opt., 18, 083001(2016).

    [4] N. K. Nishchal. Optical Cryptosystems(2019).

    [5] X. Li, T. H. Lan, C. H. Tien. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat. Commun., 3, 998(2012).

    [6] J. A. Dobrowolski. Optical interference coatings for the inhibiting of counterfeiting. Opt. News, 15, 21-22(1989).

    [7] B. Javidi, J. L. Horner. Optical pattern recognition for validation and security verification. Opt. Eng., 33, 1752-1756(1994).

    [8] B. Volodin, B. Kippelen, K. Meerholz. A polymeric optical pattern-recognition system for security verification. Nature, 383, 58-60(1996).

    [9] Z. Nazarchuk, L. Muravsky, D. Kuryliak. Optical Metrology and Optoacoustics in Nondestructive Evaluation of Materials, 242(2023).

    [10] B. Javidi, T. Nomura. Securing information by use of digital holography. Opt. Lett., 25, 28-30(2000).

    [11] S. Kishk, B. Javidi. Watermarking of three-dimensional objects by digital holography. Opt. Lett., 28, 167-169(2003).

    [12] R. Zhao, B. Sain, Q. Wei. Multichannel vectorial holographic display and encryption. Light Sci. Appl., 7, 95(2018).

    [13] K. T. P. Lim, H. Liu, Y. Liu. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat. Commun., 10, 25(2019).

    [14] J. Fang, J. Li, A. Kong. Optical orbital angular momentum multiplexing communication via inversely-designed multiphase plane light conversion. Photonics Res., 10, 2015-2023(2022).

    [15] X. Fang, H. Ren, M. Gu. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102-108(2020).

    [16] P. Georgi, Q. Wei, B. Sain. Optical secret sharing with cascaded metasurface holography. Sci. Adv., 7, eabf9718(2021).

    [17] H. Yang, P. He, K. Ou. Angular momentum holography via a minimalist metasurface for optical nested encryption. Light Sci. Appl., 12, 79(2023).

    [18] M. Ren, J. Xu. Intelligent metasurfaces can recognize objects. Light Sci. Appl., 11, 211(2022).

    [19] C. Zheng, J. Liu, H. Li. Terahertz metasurface polarization detection employing vortex pattern recognition. Photonics Res., 11, 2256-2263(2023).

    [20] S. K. Rajput, O. Matoba. Optical voice encryption based on digital holography. Opt. Lett., 42, 4619-4622(2017).

    [21] S. K. Rajput, S. Notte, T. Inoue. Optical voice security scheme for anticounterfeiting. Opt. Laser Eng., 173, 107892(2024).

    [22] P. A. Cheremkhin, V. V. Krasnov, V. G. Rodin. DMD-based optical pattern recognition using holograms generated with the Hartley transform. Opt. Laser Eng., 166, 107584(2023).

    [23] D. S. Bulgarevich, S. Tsukamoto, T. Kasuya. Pattern recognition with machine learning on optical microscopy images of typical metallurgical microstructures. Sci. Rep., 8, 2078(2018).

    [24] K. Wang, L. Xiao, W. Yi. Experimental realization of a quantum image classifier via tensor-network-based machine learning. Photonics Res., 9, 2332-2340(2021).

    [25] X. Qiu, D. Zhang, W. Zhang. “Structured-pump-enabled quantum pattern recognition,”. Phys. Rev. Lett., 122, 123901(2019).

    [26] G. Ortolano, C. Napoli, C. Harney. Quantum-enhanced pattern recognition. Phys. Rev. Appl., 20, 024072(2023).

    [27] S. Ciarella, D. Khomenko, L. Berthier. Finding defects in glasses through machine learning. Nat. Commun., 14, 4229(2023).

    [28] J. Li, X. Li, N. T. Yardimci. Rapid sensing of hidden objects and defects using a single-pixel diffractive terahertz sensor. Nat. Commun., 14, 6791(2023).

    [29] B. Javidi, J. L. Horner. Single spatial light modulator joint transform correlator. Appl. Opt., 28, 1027-1032(1989).

    [30] M. S. Alam, M. A. Karim. Fringe-adjusted joint transform correlation. Appl. Opt., 32, 4344-4350(1993).

    [31] M. S. Alam, E. H. Horache. Optoelectronic implementation of fringe-adjusted joint transform correlation. Opt. Commun., 236, 59-67(2004).

    [32] N. K. Nishchal, S. Goyal, A. Aran. Binary differential joint-transform correlator based on a ferroelectric-liquid-crystal electrically addressed spatial light modulator. Opt. Eng., 45, 026401(2006).

    [33] S. A. El-Moneim, A. Sedik, M. A. Nassar. Text-dependent and text-independent speaker recognition of reverberant speech based on CNN. Int. J. Speech Technol., 24, 993-1006(2021).

    [34] C. Barile, C. Casavola, G. Pappalettera. Acoustic emission waveforms for damage monitoring in composite materials: shifting in spectral density, entropy and wavelet packet transform. Struct. Health Monit., 21, 1768-1789(2022).

    [35] K. Ito, M. Kusano, M. Demura. Detection and location of microdefects during selective laser melting by wireless acoustic emission measurement. Addit. Manuf., 40, 101915(2021).

    [36] O. Matoba, H. Inokuchi, K. Nitta. Optical voice recorder by off-axis digital holography. Opt. Lett., 39, 6549-6552(2014).

    [37] S. K. Rajput, O. Matoba, Y. Awatsuji. Holographic multi-parameter imaging of dynamic phenomena with visual and audio features. Opt. Lett., 44, 995-999(2019).

    [38] S. K. Rajput, O. Matoba, M. Kumar. Sound wave detection by common-path digital holography. Opt. Laser Eng., 137, 106331(2021).

    [39] Y. Takase, K. Shimizu, S. Mochida. High-speed imaging of the sound field by parallel phase-shifting digital holography. Appl. Opt., 60, A179-A187(2021).

    [40] T. Kakue, Y. Moritani, K. Ito. Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography. Opt. Express., 18, 9555-9560(2010).

    [41] K. Choi, J. Lee, J. Shin. Real-time noise-free inline self-interference incoherent digital holography with temporal geometric phase multiplexing. Photonics Res., 11, 906-916(2023).

    [42] R. Kukołowicz, I. Gerej, T. Kozacki. Wide-angle digital holography with aliasing-free recording. Photonics Res., 12, 1098-1106(2024).

    Sudheesh K. Rajput, Allarakha Shikder, Naveen K. Nishchal, Ryuju Todo, Osamu Matoba, Yasuhiro Awatsuji, "Holographic acoustic-signal authenticator," Photonics Res. 12, 2104 (2024)
    Download Citation