[2] Shiklomanov A I, Lammers R B, Rawlins M A et al. Temporal and spatial variations in maximum river discharge from a new Russian data set[J]. Journal of Geophysical Research: Biogeosciences, 112, 575-579(2015).
[15] Goswami P, Srividya . A novel neural network design for long range prediction of rainfall pattern[J]. Current Science, 70, 447-457(1996).
[25] Urbonas B. Reliability of design storms in modeling[C]. Proceedings of the international symposium on urban storm runoff. Lexington, USA: University of Kentucky, 23-26(1979).
[44] Yen B C, Chow V T. Design hyetographs for small drainage structures[J]. Journal of Hydraulics Division, 106, 1055-1076(1980).
[47] Main W M, Levy B, Mccuen R. Assessment of storm duration for hydrologic design[J]. Journal of Hydrologic Engineering, 6, 209-213(2001).
[65] Keifer C J, Chu H H. Synthetic storm pattern for drainage design[J]. Journal of the Hydraulics Division, 83, 1-25(1957).
[68] Pilgrim D H, Cordery I. Rainfall temporal patterns for design floods[J]. Journal of the Hydraulics Division, 101, 81-95(1975).
[70] Huff F A, Angel J R. Frequency distributions of heavy rainstorms in Illinois[M]. Illinois State Water Survey, Circular 172. Champaign, USA: Department of Energy and Natural Resources, State of Illinois(1989).
[80] Yin S Q, Xie Y, Nearing M A et al. Intra-storm temporal patterns of rainfall in China using Huff Curves[J]. Transactions of the ASAE, 59, 1619-1632(2016).
[81] Huber W C, Singh V P. Storm water management Model-SWMM[M]. Washington D C, USA: Environmental Protection Agency(1975).
[84] Cronshey R. Urban hydrology for small watersheds: TR-55[M]. Washington D C, USA: Natural Resources Conservation Service(1986).