• Progress in Geography
  • Vol. 39, Issue 7, 1224 (2020)
Zhengxiao YAN1、2、4, Jun XIA1、3、4、*, Jinxi SONG1、4, Lingling ZHAO2, and Guowei PANG1
Author Affiliations
  • 1College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
  • 2Guangzhou Institute of Geography, Guangzhou 510070, China
  • 3State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
  • 4Key Laboratory of Surface System and Environmental Carrying Capacity, Shaanxi Province, Xi'an 710127, China
  • show less
    DOI: 10.18306/dlkxjz.2020.07.014 Cite this Article
    Zhengxiao YAN, Jun XIA, Jinxi SONG, Lingling ZHAO, Guowei PANG. Research progress on design hyetographs in small and medium-scale basins[J]. Progress in Geography, 2020, 39(7): 1224 Copy Citation Text show less
    References

    [1] Nilsson C, Reidy C A, Dynesius M et al. Fragmentation and flow regulation of the world's large river systems[J]. Science, 308, 405-408(2005).

    [2] Shiklomanov A I, Lammers R B, Rawlins M A et al. Temporal and spatial variations in maximum river discharge from a new Russian data set[J]. Journal of Geophysical Research: Biogeosciences, 112, 575-579(2015).

    [3] Reich B M. Short-duration rainfall-intensity estimates and other design aids for regions of sparse data[J]. Journal of Hydrology, 1, 3-28(1963).

    [5] Al-Rawas G A, Valeo C. Characteristics of rainstorm temporal distributions in arid mountainous and coastal regions[J]. Journal of Hydrology, 376, 318-326(2009).

    [6] Lee K T, Ho J Y. Design hyetograph for typhoon rainstorms in Taiwan[J]. Journal of Hydrologic Engineering, 13, 647-651(2008).

    [8] Watt E, Marsalek J. Critical review of the evolution of the design storm event concept[J]. Canadian Journal of Civil Engineering, 40, 105-113(2013).

    [9] Gong Y, Liang X, Li X et al. Influence of rainfall characteristics on total suspended solids in urban runoff: A case study in Beijing, China[J]. Water, 8, 278(2016). http://www.mdpi.com/2073-4441/8/7/278

    [10] Koutsoyiannis D. A stochastic disaggregation method for design storm and flood synjournal[J]. Journal of Hydrology, 156, 193-225(1994).

    [11] Koutsoyiannis D, Foufoula‐Georgiou E. A scaling model of a storm hyetograph[J]. Water Resources Research, 29, 2345-2361(1993).

    [12] Markus M, Angel J R, Yang L et al. Changing estimates of design precipitation in Northeastern Illinois: Comparison between different sources and sensitivity analysis[J]. Journal of Hydrology, 347, 211-222(2007).

    [13] Alfieri L, Laio F, Claps P. A simulation experiment for optimal design hyetograph selection[J]. Hydrological Processes, 22, 813-820(2008).

    [15] Goswami P, Srividya . A novel neural network design for long range prediction of rainfall pattern[J]. Current Science, 70, 447-457(1996).

    [18] Yeh H C, Chen Y C, Wei C. A new approach to selecting a regionalized design hyetograph by principal component analysis and analytic hierarchy process[J]. Paddy Water Environment, 11, 73-85(2013).

    [19] Grimaldi S, Serinaldi F. Design hyetograph analysis with 3-copula function[J]. Hydrological Sciences Journal, 51, 223-238(2006).

    [20] Liu C, Zhou Y, Sui J et al. Multivariate frequency analysis of urban rainfall characteristics using three-dimensional copulas[J]. Water Science and Technology, 2017, 206-218(2018).

    [21] Cowpertwait P, Isham V, Onof C. Point process models of rainfall: Developments for fine-scale structure[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463, 2569-2587(2007).

    [22] Müller H, Haberlandt U. Temporal rainfall disaggregation using a multiplicative cascade model for spatial application in urban hydrology[J]. Journal of Hydrology, 556, 847-864(2018).

    [25] Urbonas B. Reliability of design storms in modeling[C]. Proceedings of the international symposium on urban storm runoff. Lexington, USA: University of Kentucky, 23-26(1979).

    [26] Packman J C, Kidd C H R. A logical approach to the design storm concept[J]. Water Resources Research, 16, 994-1000(1980).

    [27] Cheng K S, Hueter I, Hsu E C et al. A scale-invariant Gruss-Markov model for design storm hyetographs[J]. Journal of the American Water Resources Association, 37, 723-735(2001).

    [28] Doswell III C A, Brooks H E, Maddox R A. Flash flood forecasting: An ingredients-based methodology[J]. Weather and Forecasting, 11, 560-581(1996).

    [30] Burian S J, Shepherd J M. Effect of urbanization on the diurnal rainfall pattern in Houston[J]. Hydrological Processes, 19, 1089-1103(2005).

    [31] Fontanazza C M, Freni G, La Loggia G et al. Uncertainty evaluation of design rainfall for urban flood risk analysis[J]. Water Science & Technology, 63, 2641-2650(2011).

    [32] Wang A, Qu N, Chen Y et al. A 60-minute design rainstorm for the urban area of Yangpu District, Shanghai, China[J]. Water, 10, 312(2018). http://www.mdpi.com/2073-4441/10/3/312

    [38] Watt W E, Chow K C A, Hogg W D et al. A 1-h urban design storm for Canada[J]. Canadian Journal of Civil Engineering, 13, 293-300(1986).

    [39] Li M, Xia J, Meng D J. Long-term trend analysis of seasonal precipitation for Beijing, China[J]. Journal of Resources and Ecology, 3, 64-72(2012).

    [40] Tung Y, Wong C. Assessment of design rainfall uncertainty for hydrologic engineering applications in Hong Kong[J]. Stochastic Environmental Research and Risk Assessment, 28, 583-592(2014).

    [42] Liu J G, Zang C F, Tian S Y et al. Water conservancy projects in China: Achievements, challenges and way forward[J]. Global Environmental Change, 23, 633-643(2013).

    [44] Yen B C, Chow V T. Design hyetographs for small drainage structures[J]. Journal of Hydraulics Division, 106, 1055-1076(1980).

    [46] Arnaud P, Bouvier C, Cisneros L et al. Influence of rainfall spatial variability on flood prediction[J]. Journal of Hydrology, 260, 216-230(2002).

    [47] Main W M, Levy B, Mccuen R. Assessment of storm duration for hydrologic design[J]. Journal of Hydrologic Engineering, 6, 209-213(2001).

    [50] Lin G F, Wu M C. A SOM-based approach to estimating design hyetographs of ungauged sites[J]. Journal of Hydrology, 339, 216-226(2007).

    [51] Lin G F, Chen L H, Kao S C. Development of regional design hyetographs[J]. Hydrological Processes, 19, 937-946(2005).

    [52] Grimaldi S, Petroselli A, Serinaldi F. Design hydrograph estimation in small and ungauged watersheds: Continuous simulation method versus event-based approach[J]. Hydrological Process, 26, 3124-3134(2012).

    [58] Zhai X Y, Guo L, Liu R H et al. Rainfall threshold determination for flash flood warning in mountainous catchments with consideration of antecedent soil moisture and rainfall pattern[J]. Natural Hazards, 94, 605-625(2018).

    [62] Over T M, Gupta V K. Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on large-scale forcing[J]. Journal of Applied Meteorology, 33, 1526-1542(1994).

    [64] Kimura N, Tai A, Chiang S et al. Hydrological flood simulation using a design hyetograph created from extreme weather data of a high-resolution atmospheric general circulation mode[J]. Water, 6, 345-366(2014).

    [65] Keifer C J, Chu H H. Synthetic storm pattern for drainage design[J]. Journal of the Hydraulics Division, 83, 1-25(1957).

    [66] Preul H C, Papadakis C N. Development of design storm hyetographs for Cincinnati, Ohio[J]. Journal of the American Water Resources Association, 9, 291-300(1973).

    [67] Huff F A. Time distribution of rainfall in heavy storms[J]. Water Resources Research, 3, 1007-1019(1967).

    [68] Pilgrim D H, Cordery I. Rainfall temporal patterns for design floods[J]. Journal of the Hydraulics Division, 101, 81-95(1975).

    [69] Li J K, Deng C N, Li H E et al. Hydrological environmental responses of LID and approach for rainfall pattern selection in precipitation data-lacked region[J]. Water Resources Management, 32, 3271-3284(2018).

    [70] Huff F A, Angel J R. Frequency distributions of heavy rainstorms in Illinois[M]. Illinois State Water Survey, Circular 172. Champaign, USA: Department of Energy and Natural Resources, State of Illinois(1989).

    [72] Cunnane C. Methods and merits of regional flood frequency analysis[J]. Journal of Hydrology, 100, 269-290(1988).

    [73] Omernik J M. Ecoregions of the conterminous United States[J]. Annals of the Association of American Geographers, 77, 118-125(1987).

    [74] Adams B J, Fraser H G, Howard C D D et al. Meteorological data analysis for drainage system design[J]. Journal of Environmental Engineering, 112, 827-848(1986).

    [80] Yin S Q, Xie Y, Nearing M A et al. Intra-storm temporal patterns of rainfall in China using Huff Curves[J]. Transactions of the ASAE, 59, 1619-1632(2016).

    [81] Huber W C, Singh V P. Storm water management Model-SWMM[M]. Washington D C, USA: Environmental Protection Agency(1975).

    [82] Azli M, Rao A R. Development of Huff curves for Peninsular Malaysia[J]. Journal of Hydrology, 388, 77-84(2010).

    [83] Asquith W H, Bumgarner J R, Fahlquist L S. A triangular model of dimensionles runoff producing rainfall hyetographs in Texas[J]. Journal of the American Water Resources Association, 39, 911-921(2003).

    [84] Cronshey R. Urban hydrology for small watersheds: TR-55[M]. Washington D C, USA: Natural Resources Conservation Service(1986).

    [86] Abdulrazzak M, Elfeki A, Kamis A S et al. The impact of rainfall distribution patterns on hydrological and hydraulic response in arid regions: Case study Medina, Saudi Arabia[J]. Arabian Journal of Geosciences, 11, 679(2018). https://doi.org/10.1007/s12517-018-4043-z

    Zhengxiao YAN, Jun XIA, Jinxi SONG, Lingling ZHAO, Guowei PANG. Research progress on design hyetographs in small and medium-scale basins[J]. Progress in Geography, 2020, 39(7): 1224
    Download Citation