• Nano-Micro Letters
  • Vol. 16, Issue 1, 202 (2024)
Yue Liu1,2,†, Gui Liu1,†, Xiangyu Chen1,†, Chuang Xue1..., Mingke Sun1, Yifei Liu1, Jianxin Kang1,*, Xiujuan Sun2,** and Lin Guo1,***|Show fewer author(s)
Author Affiliations
  • 1School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, People’s Republic of China
  • 2School of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, 411105 Hunan, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01420-6 Cite this Article
    Yue Liu, Gui Liu, Xiangyu Chen, Chuang Xue, Mingke Sun, Yifei Liu, Jianxin Kang, Xiujuan Sun, Lin Guo. Achieving Negatively Charged Pt Single Atoms on Amorphous Ni(OH)2 Nanosheets with Promoted Hydrogen Absorption in Hydrogen Evolution[J]. Nano-Micro Letters, 2024, 16(1): 202 Copy Citation Text show less
    References

    [1] Y. Hu, T. Chao, Y. Li, P. Liu, T. Zhao et al., Cooperative Ni(Co)–Ru–P Sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem. Int. Ed. 62(35), e202308800 (2023).

    [2] J. Park, S. Lee, H. Kim, A. Cho, S. Kim et al., Investigation of the support effect in atomically dispersed Pt on WO3−x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58(45), 16038–16042 (2019).

    [3] H. Gu, J. Li, X. Niu, J. Lin, L. Chen et al., Symmetry-breaking p-block antimony single atoms trigger N-bridged titanium sites for electrocatalytic nitrogen reduction with high efficiency. ACS Nano 17(21), 21838–21849 (2023).

    [4] H. Gu, W. Yue, J. Hu, X. Niu, H. Tang et al., Asymmetrically coordinated Cu–N1C2 single-atom catalyst immobilized on Ti3C2Tx MXene as separator coating for lithium-sulfur batteries. Adv. Energy Mater. 13(20), 2204014 (2023).

    [5] Q. Li, Q. Zhang, W. Xu, R. Zhao, M. Jiang et al., Sowing single atom seeds: a versatile strategy for hyper-low noble metal loading to boost hydrogen evolution reaction. Adv. Energy Mater. 13(10), 2203955 (2023).

    [6] C. Ye, J. Shan, C. Zhu, W. Xu, L. Song et al., Spatial structure engineering of interactive single platinum sites toward enhanced electrocatalytic hydrogen evolution. Adv. Energy Mater. 13(45), 2302190 (2023).

    [7] C. Wang, L. Kuai, W. Cao, H. Singh, A. Zakharov et al., Highly dispersed Cu atoms in MOF-derived N-doped porous carbon inducing Pt loads for superior oxygen reduction and hydrogen evolution. Chem. Eng. J. 426(15), 130749 (2021).

    [8] Z. Chen, X. Li, J. Zhao, S. Zhang, J. Wang et al., Stabilizing Pt single atoms through Pt–Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 62(39), e202308686 (2023).

    [9] R. Li, D. Wu, P. Rao, P. Deng, J. Li et al., General approach for atomically dispersed precious metal catalysts toward hydrogen reaction. Carbon Energy 5(7), e294 (2023).

    [10] K. Chen, N. Zhang, F. Wang, J. Kang, K. Chu, Main-group indium single-atom catalysts for electrocatalytic NO reduction to NH3. J. Mater. Chem. A 11(13), 6814–6819 (2023).

    [11] X. Cheng, B. Xiao, Y. Chen, Y. Wang, L. Zheng et al., Ligand charge donation-acquisition balance: a unique strategy to boost single pt atom catalyst mass activity toward the hydrogen evolution reaction. ACS Catal. 12(10), 5970–5978 (2022).

    [12] P. Kuang, Y. Wang, B. Zhu, F. Xia, C. Tung et al., Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv. Mater. 33(18), 2008599 (2021).

    [13] H. Yang, Y. Ji, Q. Shao, W. Zhu, M. Fang et al., Metastable-phase platinum oxide for clarifying the Pt–O active site for the hydrogen evolution reaction. Energy Environ. Sci. 16(2), 574–583 (2023).

    [14] W. Chen, Y. Ma, F. Li, L. Pan, W. Gao et al., Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation. Adv. Funct. Mater. 29(42), 1904278 (2019).

    [15] Q. Fu, L. Wong, F. Zheng, X. Zheng, C.S. Tsang et al., Unraveling and leveraging in situ surface amorphization for enhanced hydrogen evolution reaction in alkaline media. Nat. Commun. 14(1), 6462 (2023).

    [16] J. Nai, H. Yin, T. You, L. Zheng, J. Zhang et al., Efficient electrocatalytic water oxidation by using amorphous Ni–Co double hydroxides nanocages. Adv. Energy Mater. 5(10), 1401880 (2015).

    [17] X. Chen, S. Lv, J. Kang, Z. Wang, T. Guo et al., Efficient C–N coupling in the direct synthesis of urea from CO2 and N2 by amorphous SbxBi1−xOy clusters. Proc. Natl. Acad. Sci. U.S.A. 120(39), e2306841120 (2023).

    [18] J. Kang, X. Chen, R. Si, X. Gao, S. Zhang et al., Activating Bi p-orbitals in dispersed clusters of amorphous BiOx for electrocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 62(15), e202217428 (2023).

    [19] Y. Zhao, Z. Huang, L. Wang, X. Chen, Y. Zhang et al., Highly efficient and recyclable amorphous Pd(II)/crystal Pd(0) catalyst for boosting Suzuki reaction in aqueous solution. Nano Res. 15(2), 1193–1198 (2022).

    [20] J. Du, Y. Huang, Z. Huang, G. Wu, B. Wu et al., Reversing the catalytic selectivity of single-atom Ru via support amorphization. JACS Au 2(5), 1078–1083 (2022).

    [21] Y. Liu, X. Liu, A.R. Jadhav, T. Yang, Y. Hwang et al., Unraveling the function of metal-amorphous support interactions in single-atom electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 61(9), e202114160 (2022).

    [22] D. Feng, P. Wang, R. Qin, W. Shi, L. Gong et al., Flower-like amorphous MoO3−x stabilized Ru single atoms for efficient overall water/seawater splitting. Adv. Sci. 10(18), 2300342 (2023).

    [23] Y. Hu, G. Luo, L. Wang, X. Liu, Y. Qu et al., Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 11(1), 2002816 (2021).

    [24] K. Chen, Y. Zhang, J. Xiang, X. Zhao, X. Li et al., p-Block antimony single-atom catalysts for nitric oxide electroreduction to ammonia. ACS Energy Lett. 8(3), 1281–1288 (2023).

    [25] L. Zeng, Z. Zhao, Q. Huang, C. Zhou, W. Chen et al., Single-atom Cr–N4 sites with high oxophilicity interfaced with Pt atomic clusters for practical alkaline hydrogen evolution catalysis. J. Am. Chem. Soc. 145(39), 21432–21441 (2023).

    [26] J. Kang, Y. Xue, J. Yang, Q. Hu, Q. Zhang et al., Realizing two-electron transfer in Ni(OH)2 nanosheets for energy storage. J. Am. Chem. Soc. 144(20), 8969–8976 (2022).

    [27] J. Kang, X. Qiu, Q. Hu, J. Zhong, X. Gao et al., Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat. Catal. 4(12), 1050–1058 (2021).

    [28] J. Kang, G. Liu, Q. Hu, Y. Huang, L.M. Liu et al., Parallel nanosheet arrays for industrial oxygen production. J. Am. Chem. Soc. 145(46), 25143–25149 (2023).

    [29] W. Guo, X. Gao, M. Zhu, C. Xu, X. Zhu et al., A closely packed Pt1.5Ni1−x/Ni–N–C hybrid for relay catalysis towards oxygen reduction. Energy Environ. Sci. 16(1), 148–156 (2023).

    [30] M. Wang, Y. Xu, C.K. Peng, S.Y. Chen, Y.G. Lin et al., Site-specified two-dimensional heterojunction of Pt nanoparticles/metal-organic frameworks for enhanced hydrogen evolution. J. Am. Chem. Soc. 143(40), 16512–16518 (2021).

    [31] T. Zhang, Z. Zhao, D. Zhang, X. Liu, P. Wang et al., Superexchange-induced Pt–O–Ti3+ site on single photocatalyst for efficient H2 production with organics degradation in wastewater. Proc. Natl. Acad. Sci. U.S.A. 120(23), e2302873120 (2023).

    [32] Y. Li, A.I. Frenkel, Deciphering the local environment of single-atom catalysts with X-ray absorption spectroscopy. Acc. Chem. Res. 54(11), 2660–2669 (2021).

    [33] M. Zhou, H. Li, A. Long, B. Zhou, F. Lu et al., Modulating 3D orbitals of Ni atoms on Ni–Pt edge sites enables highly-efficient alkaline hydrogen evolution. Adv. Energy Mater. 11(36), 2101789 (2021).

    [34] K. Zhou, Z. Wang, C. Han, X. Ke, C. Wang et al., Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat. Commun. 12(1), 3783 (2021).

    [35] X. Xiao, Z. Li, Y. Xiong, Y.W. Yang, IrMo nanocluster-doped porous carbon electrocatalysts derived from cucurbit[6]uril boost efficient alkaline hydrogen evolution. J. Am. Chem. Soc. 145(30), 16548–16556 (2023).

    [36] X. Liu, Y. Jiang, J. Huang, W. Zhong, B. He et al., Bifunctional PdPt bimetallenes for formate oxidation-boosted water electrolysis. Carbon Energy 5(12), e367 (2023).

    [37] J. Chen, C. Chen, M. Qin, B. Li, B. Lin et al., Reversible hydrogen spillover in Ru–WO3−x enhances hydrogen evolution activity in neutral pH water splitting. Nat. Commun. 13(1), 5382 (2022).

    [38] X. Chen, X.T. Wang, J.B. Le, S.M. Li, X. Wang et al., Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction. Nat. Commun. 14(1), 5289 (2023).

    [39] C. Wan, Z. Zhang, J. Dong, M. Xu, H. Pu et al., Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction. Nat. Mater. 22(8), 1022–1029 (2023).

    [40] X. Wang, C. Xu, M. Jaroniec, Y. Zheng, S.Z. Qiao, Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nat. Commun. 10(1), 4876 (2019).

    [41] T. Zhang, J. Jin, J. Chen, Y. Fang, X. Han et al., Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction. Nat. Commun. 13(1), 6875 (2022).

    [42] R. Subbaraman, D. Tripkovic, D. Strmcnik, K.C. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334(6060), 1256–1260 (2011).

    [43] Q. Xu, Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Appl. Catal. B 242, 60–66 (2019).

    [44] A. Mahdavi-Shakib, T.N. Whittaker, T.Y. Yun, K.B. Sravan Kumar, L.C. Rich et al., The role of surface hydroxyls in the entropy-driven adsorption and spillover of H2 on Au/TiO2 catalysts. Nat. Catal. 6(1), 710–719 (2023).

    [45] J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152(3), J23 (2005).

    [46] Q. Yang, H. Liu, P. Yuan, Y. Jia, L. Zhuang et al., Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 144(5), 2171–2178 (2022).

    [47] H. Zhang, P. An, W. Zhou, B. Guan, P. Zhang et al., Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4(1), eaao6657 (2018).

    [48] Y. Tian, M. Wen, A. Huang, Q. Wu, Z. Wang et al., Significantly stabilizing hydrogen evolution reaction induced by Nb-doping Pt/Co(OH)2 nanosheets. Small 19(20), 2207569 (2023).

    [49] X. Wan, H. Wu, B. Guan, D. Luan, X. Lou, Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Adv. Mater. 32(7), 1901349 (2020).

    Yue Liu, Gui Liu, Xiangyu Chen, Chuang Xue, Mingke Sun, Yifei Liu, Jianxin Kang, Xiujuan Sun, Lin Guo. Achieving Negatively Charged Pt Single Atoms on Amorphous Ni(OH)2 Nanosheets with Promoted Hydrogen Absorption in Hydrogen Evolution[J]. Nano-Micro Letters, 2024, 16(1): 202
    Download Citation