• Frontiers of Optoelectronics
  • Vol. 4, Issue 2, 195 (2011)
Qi SHAO1、2, Tao WANG1, Xiuhua WANG2、3, and Youcun CHEN1、*
Author Affiliations
  • 1Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China
  • 2Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
  • 3Anhui Key Laboratory of Functional Molecular Solids, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
  • show less
    DOI: 10.1007/s12200-011-0164-7 Cite this Article
    Qi SHAO, Tao WANG, Xiuhua WANG, Youcun CHEN. Bis-(8-hydroxyquinoline) copper nanoribbons: preparation, characterization, and photoconductivity[J]. Frontiers of Optoelectronics, 2011, 4(2): 195 Copy Citation Text show less
    References

    [1] Zhang X J, Zhang X H, Zou K, Lee C S, Lee S T. Single-crystal nanoribbons, nanotubes, and nanowires from intramolecular chargetransfer organic molecules. Journal of the American Chemical Society, 2007, 129(12): 3527-3532

    [2] An B K, Lee D S, Lee J S, Park Y S, Song H S, Park S Y. Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbene derivative. Journal of the American Chemical Society, 2004, 126(33): 10232-10233

    [3] Zhao L Y, Yang W S, Luo Y, Zhai T Y, Zhang G J, Yao J N. Nanotubes from isomeric dibenzoylmethane molecules. Chemistry, 2005, 11(12): 3773-3778

    [4] Xia Y N, Yang P D, Sun Y G,Wu Y Y, Mayers B, Gates B, Yin Y D, Kim F, Yan H Q. One-dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials, 2003, 15(5): 353-389

    [5] Zhang X J, Jie J S, ZhangWF, Zhang C Y, Luo L B, He Z B, Zhang X H, Zhang W J, Lee C S, Lee S T. Photoconductivity of a single small-molecule organic nanowire. Advanced Materials, 2008, 20(12): 2427-2432

    [6] Hu J S, Guo Y G, Liang H P, Wan L J, Jiang L. Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. Journal of the American Chemical Society, 2005, 127(48): 17090-17095

    [7] Zhao Y S, Fu H B, Peng A D, Ma Y, Xiao D B, Yao J N. Lowdimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Advanced Materials, 2008, 20(15): 2859-2876

    [8] Chiu J J, Kei C C, Perng T P, Wang W S. Organic semiconductor nanowires for field emission. Advanced Materials, 2003, 15(16): 1361-1364

    [9] Liu H B, Zhao Q, Li Y L, Liu Y, Lu F S, Zhuang J P,Wang S, Jiang L, Zhu D B, Yu D P, Chi L F. Field emission properties of large-area nanowires of organic charge-transfer complexes. Journal of the American Chemical Society, 2005, 127(4): 1120-1121

    [10] Tang C W, VanSlyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913-915

    [11] Chiu J J,WangWS, Kei C C, Perng T P. Tris-(8-hydroxyquinoline) aluminum nanoparticles prepared by vapor condensation. Applied Physics Letters, 2003, 83(2): 347-349

    [12] Hu J S, Ji H X, Cao A M, Huang Z X, Zhang Y, Wan L J, Xia A D, Yu D P, Meng X M, Lee S T. Facile solution synthesis of hexagonal AlQ3 nanorods and their field emission properties. Chemical Communications, 2007, (29): 3083-3085

    [13] Wang X H, Shao M W, Shao G, Wang S W. Tris(8-hydroxyquinoline) aluminum nanoribbons: facile solvothermal preparation and photoconductivity studies. Journal of Nanoscience and Nanotechnology, 2009, 9(8): 4709-4714

    [14] Cho C P, Yu C Y, Perng T P. Growth of AlQ3 nanowires directly from amorphous thin film and nanoparticles. Nanotechnology, 2006, 17(21): 5506-5510

    [15] Chen W, Peng Q, Li Y D. Luminescent bis-(8-hydroxyquinoline) cadmium complex nanorods. Crystal Growth & Design, 2008, 8(2): 564-567

    [16] Pan H C, Liang F P, Mao C J, Zhu J J, Chen H Y. Highly luminescent zinc(II)-bis(8-hydroxyquinoline) complex nanorods: sonochemical synthesis, characterizations, and protein sensing. The Journal of Physical Chemistry B, 2007, 111(20): 5767-5772

    [17] Wang X H, Shao M W, Liu L. High photoluminescence and photoswitch of bis(8-hydroxyquinoline) zinc nanoribbons. Synthetic Metals, 2010, 160(7-8): 718-721

    [18] Fanning J C, Jonassen H B. The reaction of 8-quinolinol with copper (II) salts. Journal of Inorganic and Nuclear Chemistry, 1963, 25(1): 29-35

    [19] Tackett J E, Sawyer D T. Properties and infrared spectra in the potassium bromide region of 8-quinolinol and its metal chelates. Inorganic Chemistry, 1964, 3(5): 692-696

    [20] Tang Q X, Li H X, Liu Y L, HuWP. High-performance air-stable ntype transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons. Journal of the American Chemical Society, 2006, 128(45): 14634-14639

    [21] Li Q H,Wan Q, Liang Y X, Wang T H. Electronic transport through individual ZnO nanowires. Applied Physics Letters, 2004, 84(22): 4556-4558

    Qi SHAO, Tao WANG, Xiuhua WANG, Youcun CHEN. Bis-(8-hydroxyquinoline) copper nanoribbons: preparation, characterization, and photoconductivity[J]. Frontiers of Optoelectronics, 2011, 4(2): 195
    Download Citation