[1] Voulodimos A, Doulamis N, Doulamis A et al. Deep learning for computer vision: a brief review[J]. Computational Intelligence and Neuroscience, 2018, 7068349(2018).
[10] Li Haoyuan, Hu Qi, Yao You, et al. CFMW: crossmodality fusion mamba f multispectral object detection under adverse weather conditions[DBOL]. arXiv preprint arXiv: 2404.16302, 2024.
[13] Zhou Kailai, Chen Linsen, Cao Xun. Improving multispectral pedestrian detection by addressing modality imbalance problems[C]Proceedings of the 16th European Conference on Computer Vision. 2020: 787803.
[14] Liu Ye, Meng Shiyang, Wang Hongzhang et al. Deep learning based object detection from multi-modal sensors: an overview[J]. Multimedia Tools and Applications, 83, 19841-19870(2024).
[15] FLIR Thermal Dataset[DBOL]. [2023]. https:www.flir.comoemadasadasdatasetfm.
[16] Jia Xinyu, Zhu Chuang, Li Minzhen, et al. LLVIP: a visibleinfrared paired dataset f lowlight vision[C]Proceedings of 2021 IEEECVF International Conference on Computer Vision Wkshops. 2021: 34893497.
[17] Paolo Gamba. Pavia Centra[DBOL]. [2010]. http:tlclab.unipv.it.
[18] Pursue’s university MultiSpecsite[DBOL]. [1992]. https:engineering.purdue.edu~biehlMultiSpechyperspectral.html.
[19] Zhang Jiaqing, Lei Jie, Xie Weiying et al. SuperYOLO: super resolution assisted object detection in multimodal remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 5605415(2023).
[20] Razakarivony S, Jurie F. Vehicle detection in aerial imagery: a small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 34, 187-203(2016).
[21] Hwang S, Park J, Kim N, et al. Multispectral pedestrian detection: benchmark dataset baseline[C]Proceedings of 2015 IEEE Conference on Computer Vision Pattern Recognition. 2015: 10371045.
[22] Liu Jingjing, Zhang Shaoting, Wang Shu, et al. Multispectral deep neural wks f pedestrian detection[C]Proceedings of British Machine Vision Conference 2016. 2016.
[23] Li Chengyang, Song Dan, Tong Ruofeng, et al. Multispectral pedestrian detection via simultaneous detection segmentation[C]Proceedings of British Machine Vision Conference 2018. 2018.
[24] Xu Lizhi. Research on imaging quality f airbne sweeping hyperspectral imager[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics Physics, Chinese Academy of Sciences), 2020: 2
[25] Yu Lei. Development and application of imaging spectrometer (Invited)[J]. Infrared and Laser Engineering, 51, 20210940(2022).
[26] Li Yue, Yang Cankun, Zhou Chunping. Advance and application of UAV hyperspectral imaging equipment[J]. Bulletin of Surveying and Mapping, 1-6,17(2019).
[27] Saline[DBOL]. [2001]. https:www.ehu.eusccwintcoindex.phpHyperspectral_Remote_Sensing_Scenes.
[30] Martimt P, Fernez V, Kirschner V, et al. Sentinel2 MultiSpectral imager (MSI) calibrationvalidation[C]Proceedings of 2012 IEEE International Geoscience Remote Sensing Symposium. 2012: 69997002.
[31] Chen Yupeng. They, design experiment of snapshot infrared Fourier transfm imaging spectrometer[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics Physics, Chinese Academy of Sciences), 2022: 3
[33] Miao Xin, Yuan Xin, Pu Yunchen, et al. Lambda: reconstruct hyperspectral images from a snapshot measurement[C]Proceedings of 2019 IEEECVF International Conference on Computer Vision. 2019: 40584068.
[34] Yimoto K, Han Xianhua. HyperMix: hyperspectral image reconstruction with deep mixed wk from a snapshot measurement[C]Proceedings of 2021 IEEECVF International Conference on Computer Vision. 2021: 11841193.
[38] Bernath P F. Spectra of atoms molecules[M]. 4th ed. Oxfd: Oxfd University Press, 2020.
[40] Yadav A K, Roy R, Kumar R, et al. Algithm f denoising of col images based on median filter[C]Proceedings of the 2015 3rd International Conference on Image Infmation Processing. 2015: 428432.
[42] Ojha U, Garg A. Denoising high resolution multispectral images using deep learning approach[C]Proceedings of the 2016 15th IEEE International Conference on Machine Learning Applications. 2016: 871875.
[44] Lin T Y, Maire M, Belongie S, et al. Microsoft coco: common objects in context[C]Proceedings of the 13th European Conference on Computer Vision. 2014: 740755.
[45] riluka M, Pishchulin L, Gehler P, et al. 2D human pose estimation: new benchmark state of the art analysis[C]Proceedings of 2014 IEEE Conference on Computer Vision Pattern Recognition. 2014: 36863693.
[46] Everingham M, Eslami S M A, Van Gool L et al. The PASCAL visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 111, 98-136(2015).
[47] Chen Xinlei, Fang Hao, Lin T Y, et al. Microsoft COCO captions: data collection evaluation server[DBOL]. arXiv preprint arXiv: 1504.00325, 2015.
[48] Wu Fan. AutoLabelImg[EBOL]. [2020]. https:github.comwufantbAutoLabelImg.
[49] Zhou Xingyi, Koltun V, Krähenbühl P. Tracking objects as points[C]Proceedings of the 16th European Conference on Computer Vision. 2020: 474490.
[51] Li Ruihuang, He Chenhang, Zhang Yabin, et al. SIM: semanticaware instance mask generation f boxsupervised instance segmentation[C]Proceedings of 2023 IEEECVF Conference on Computer Vision Pattern Recognition. 2023: 71937203.
[52] Chen Li, Li Linhan, Wang Shiyong. MMShip: medium resolution multispectral satellite imagery ship dataset[J]. Optics and Precision Engineering, 31, 1962-1972(2023).
[53] Chen Zizhao, Qian Yeqiang, Yang Xiaoxiao, et al. AMFD: distillation via adaptive multimodal fusion f multispectral pedestrian detection[DBOL]. arXiv preprint arXiv: 2405.12944, 2024.
[55] Yan Yunbin, Cui Bolun, Yang Tingting. Multi-modal high-resolution hyperspectral object detection system based on lightweight platform[J]. Infrared Technology, 45, 582-591(2023).
[56] Jia Jianxin, Wang Yueming, Zheng Xiaou, et al. Design, perfmance, applications of AMMIS: a novel airbne multimodular imaging spectrometer f highresolution earth observations[J]. Engineering, doi: 10.1016j.eng.2024.11.001.
[57] Wan Yuanqing, Liu Weijun, Lin Ruoyu. Research progress and applications of spectral imaging based on metasurfaces[J]. Opto-Electronic Engineering, 50, 230139(2023).
[59] Wang Juntong, Yang Huadong. Camouflaged target recognition technology based on hyperspectral unmixing[J]. Semiconductor Optoelectronics, 45, 261-268(2024).
[61] Lowe D G. Object recognition from local scaleinvariant features[C]Proceedings of the 7th IEEE International Conference on Computer Vision. 1999: 11501157.
[63] Bay H, Tuytelaars T, Van Gool L. SURF: speeded up robust features[C]Proceedings of the 9th European Conference on Computer Vision. 2006: 404417.
[64] Song Yanyan, Lu Ying. Decision tree methods: applications for classification and prediction[J]. Shanghai Archives of Psychiatry, 27, 130-135(2015).
[67] Viola P, Jones M. Rapid object detection using a boosted cade of simple features[C]Proceedings of 2001 IEEE Computer Society Conference on Computer Vision Pattern Recognition. 2001: I.
[69] Papagegiou C P, en M, Poggio T. A general framewk f object detection[C]Proceedings of the Sixth International Conference on Computer Vision. 1998: 555562.
[70] Dalal N, Triggs B. Histograms of iented gradients f human detection[C]Proceedings of 2005 IEEE Computer Society Conference on Computer Vision Pattern Recognition. 2005: 886893.
[71] Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, defmable part model[C]Proceedings of 2008 IEEE Conference on Computer Vision Pattern Recognition. 2008: 18.
[72] Zhang Tianwen, Zhang Xiaoling, Ke Xiao et al. HOG-ShipCLSNet: a novel deep learning network with hog feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5210322(2022).
[74] Paszke A, Gross S, Massa F, et al. PyTch: an imperative style, highperfmance deep learning library[C]Proceedings of the 33rd Conference on Neural Infmation Processing Systems. 2019: 32.
[75] Abadi M, Agarwal A, Barham P, et al. TensFlow: largescale machine learning on heterogeneous distributed systems[DBOL]. arXiv preprint arXiv: 1603.04467, 2016.
[76] Krizhevsky A, Sutskever I, Hinton G E. Image classification with deep convolutional neural wks[C]Proceedings of the 26th International Conference on Neural Infmation Processing Systems. 2012: 10971105.
[77] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies f accurate object detection semantic segmentation[C]Proceedings of 2014 IEEE Conference on Computer Vision Pattern Recognition. 2014: 580587.
[80] Girshick R. Fast RCNN[C]Proceedings of 2015 IEEE International Conference on Computer Vision. 2015: 14401448.
[81] Lin T Y, Dollár P, Girshick R, et al. Feature pyra wks f object detection[C]Proceedings of 2017 IEEE Conference on Computer Vision Pattern Recognition. 2017: 936944.
[82] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, realtime object detection[C]Proceedings of 2016 IEEE Conference on Computer Vision Pattern Recognition. 2016: 779788.
[83] Liu Wei, Anguelov D, Erhan D, et al. SSD: single shot multibox detect[C]Proceedings of the 14th European Conference on Computer Vision. 2016: 2137.
[84] Lin T Y, Goyal P, Girshick R, et al. Focal loss f dense object detection[C]Proceedings of 2017 IEEE International Conference on Computer Vision. 2017: 29993007.
[85] Law H, Deng Jia. Cner: detecting objects as paired keypoints[C]Proceedings of the 15th European Conference on Computer Vision. 2018: 765781.
[86] Carion N, Massa F, Synnaeve G, et al. Endtoend object detection with transfmers[C]Proceedings of the 16th European Conference on Computer Vision. 2020: 213229.
[87] Zhu Xizhou, Su Weijie, Lu Lewei, et al. Defmable DETR: defmable transfmers f endtoend object detection[C]Proceedings of the 9th International Conference on Learning Representations. 2021.
[88] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]Proceedings of the 31st International Conference on Neural Infmation Processing Systems. 2017: 60006010.
[89] Han Dongchen, Pan Xuran, Han Yizeng, et al. Flatten transfmer: vision transfmer using focused linear attention[C]Proceedings of 2023 IEEECVF International Conference on Computer Vision. 2023: 59385948.
[91] Gu A, Dao T. Mamba: lineartime sequence modeling with ive state spaces[DBOL]. arXiv preprint arXiv: 2312.00752, 2024.
[92] Zhu Lianghui, Liao Bencheng, Zhang Qian, et al. Vision mamba: efficient visual representation learning with bidirectional state space model[C]Proceedings of the 41st International Conference on Machine Learning. 2024.
[93] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning f image recognition[C]Proceedings of 2016 IEEE Conference on Computer Vision Pattern Recognition. 2016: 770778.
[95] Fang Qingyun, Han Dapeng, Wang Zhaokui. Crossmodality fusion transfmer f multispectral object detection[DBOL]. arXiv preprint arXiv: 2111.00273, 2022.
[96] Redmon J, Farhadi A. YOLOv3: an incremental improvement[DBOL]. arXiv preprint arXiv: 1804.02767, 2018.
[97] Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models[C]Proceedings of the 34th International Conference on Neural Infmation Processing Systems. 2020: 574.
[98] Rombach R, Blattmann A, Lenz D, et al. Highresolution image synthesis with latent diffusion models[C]Proceedings of 2022 IEEECVF Conference on Computer Vision Pattern Recognition. 2022: 1067410685.
[99] Zhao Tianyi, Yuan Maoxun, Jiang Feng, et al. Removal ion: improving RGBinfrared object detection via coarsetofine fusion[DBOL]. arXiv preprint arXiv: 2401.10731, 2024.
[101] Shazeer N, Mirhoseini A, Maziarz K, et al. Outrageously large neural wks: the sparselygated mixtureofexperts layer[C]Proceedings of the 5th International Conference on Learning Representations. 2017.
[102] SohlDickstein J, Weiss E A, Maheswaranathan N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]Proceedings of the 32nd International Conference on Machine Learning. 2015: 22562265.
[105] Mengu D, Tabassum A, Jarrahi M, et al. Snapshot multispectral imaging using a diffractive optical wk[J]. Light: Science & Applications, 2023, 12: 86.
[106] Wang Xudong, Girdhar R, Yu S X, et al. Cut learn f unsupervised object detection instance segmentation[C]Proceedings of 2023 IEEECVF Conference on Computer Vision Pattern Recognition. 2023: 31243134.