• Acta Photonica Sinica
  • Vol. 49, Issue 4, 0410005 (2020)
Xiao-han ZHANG1, Li-bo YAO1,*, Ya-fei LÜ1, Peng HAN2, and Jian-wei LI3
Author Affiliations
  • 1Information Fusion Institute, Naval Aviation University, Yantai, Shandong 264000, China
  • 2Troops of 91039, Beijing 102488, China
  • 3Troops of 92877, Zhoushan, Zhejiang 316000, China
  • show less
    DOI: 10.3788/gzxb20204904.0410005 Cite this Article
    Xiao-han ZHANG, Li-bo YAO, Ya-fei LÜ, Peng HAN, Jian-wei LI. Center Based Model for Arbitrary-oriented Ship Detection in Remote Sensing Images[J]. Acta Photonica Sinica, 2020, 49(4): 0410005 Copy Citation Text show less
    References

    [1] DING Jian, XUE Nan, LONG Yang, et al. Learning RoI transfmer f detecting iented objects in aerial images[C]. 2019 Conference on Computer Vision Pattern Recognition (CVPR 2019), USA, 2019: 110.

    [3] LIU Zikun, HU Jiangao, WENG Lubin, et al. Rotated region based CNN f ship detection[C]. IEEE International Conference on Image Processing, China, 2017: 110.

    [4] Xiao-qing ZHANG, Bo-li XIONG, Gang-gang DONG. Ship segmentation in SAR images by improved nonlocal active contour model. Sensors, 18, 4220-4240(2018).

    [5] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 Conference on Computer Vision Pattern Recognition (CVPR 2015), Boston, USA, 2015: 19.

    [6] A SENGUPTA, Y YE, W ROBERT. Going deeper in spiking neural networks:VGG and residual architectures. Frontiers in Neuroscience, 13, 1-12(2018).

    [7] Shao-qing REN, Kai-ming HE, R GIRSHICK. Faster R-CNN:towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [8] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detect[C]. 2016 European Conference on Computer Vision(ECCV2016), Amsterdam, The herls, 2016: 2137.

    [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, realtime object detection[C]. 2015 Conference on Computer Vision Pattern Recognition (CVPR 2015), Boston, USA, 2015: 779788.

    [10] Jian-qi MA, Wei-yuan SHAO, Hao YE. Arbitrary-oriented scene text detection via rotation proposals. IEEE Transactions on Multimedia, 20, 3111-3122(2018).

    [11] Gong CHENG, Pei-cheng ZHOU, Jun-wei HAN. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Transactions on Geoscience & Remote Sensing, 54, 7405-7415(2016).

    [12] XIA Guisong, BAI Xiang, DING Jian, et al. Dota: A largescale dataset f object detection in aerial images[C]. Conference on Computer Vision Pattern Recognition (CVPR 2018), USA, 2018: 110.

    [13] Yang XUE, Hao SUN, Kun FU. Automatic ship detection in remote sensing images from Google Earth of complex scenes based on multiscale rotation dense feature pyramid networks. Remote Sensing, 10, 132-145(2018).

    [14] Yang XUE, Hao SUN, Xian SUN. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network. IEEE Access, 6, 50839-50849(2018).

    [15] Ji-zhou WANG, Chang-hua LU, Wei-wei JIANG. Simultaneous ship detection and orientation estimation in SAR images based on attention module and angle regression. Sensors, 18, 2851-2868(2018).

    [16] Wen-chao LIU, Long MA, He CHEN. Arbitrary-oriented ship detection framework in optical remote-sensing images. IEEE Geoscience and Remote Sensing Letters, 15, 937-941(2018).

    [17] ZHOU Xingyi, WANG Dequan, KRHENBVHL P. Objects as points[JOL]. 2019. Available: https:arxiv.gabs1904.07850v1.

    [18] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning f image recognition[C]. 2016 Conference on Computer Vision Pattern Recognition (CVPR 2016), USA, 2016: 110.

    [19] T LIN, P DOLLÁR, R GIRSHICK. Feature pyramid networks for object detection. 2016 Conference on Computer Vision and Pattern Recognition (CVPR 2016), USA, 1-10(2016).

    [20] LAW H, DENG Jia. Cner: detecting objects as paired keypoints[C]. 15th European Conference on Computer Vision (ECCV2018), Munich, Germany, 110.

    [21] T LIN, P GOYAL, R GIRSHICK. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis & Machine Intelligence, 99, 2999-3007(2017).

    [22] ALEXER N, LUC V. Efficient nonmaximum suppression[C]. 18th International Conference on Pattern Recognition (ICPR2006), USA, 2006: 3850855.

    [23] Jiao JIAO, Yue ZHANG, Hao SUN. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection. IEEE Access, 6, 20881-20892(2018).

    [24] YU F, WANG Dequan, SHELHAMER E, et al. Deep layer aggregation[C]. 2018 Conference on Computer Vision Pattern Recognition (CVPR 2018), USA, 2016: 110.

    Xiao-han ZHANG, Li-bo YAO, Ya-fei LÜ, Peng HAN, Jian-wei LI. Center Based Model for Arbitrary-oriented Ship Detection in Remote Sensing Images[J]. Acta Photonica Sinica, 2020, 49(4): 0410005
    Download Citation