• Acta Photonica Sinica
  • Vol. 51, Issue 1, 0151106 (2022)
Bin ZHANG, Lei WANG, Yuechen JIA, and Feng CHEN*
Author Affiliations
  • School of Physics,State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China
  • show less
    DOI: 10.3788/gzxb20225101.0151106 Cite this Article
    Bin ZHANG, Lei WANG, Yuechen JIA, Feng CHEN. Research Advances of Optical Waveguides by Light-manipulation Based Femtosecond Laser Writing(Invited)[J]. Acta Photonica Sinica, 2022, 51(1): 0151106 Copy Citation Text show less
    References

    [1] B ZHANG, L WANG, F CHEN. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser & Photonics Reviews, 14, 1900407(2020).

    [2] D TAN, B ZHANG, J QIU. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications. Laser & Photonics Reviews, 15, 2000455(2021).

    [3] X WANG, H YU, P LI et al. Femtosecond laser-based processing methods and their applications in optical device manufacturing: A review. Optics and Laser Technology, 135, 106687(2021).

    [4] D TAN, X SUN, J QIU. Femtosecond laser writing low-loss waveguides in silica glass: highly symmetrical mode field and mechanism of refractive index change. Optical Materials Express, 11, 848-857(2021).

    [5] D TAN, X SUN, Q WANG et al. Fabricating low loss waveguides over a large depth in glass by temperature gradient assisted femtosecond laser writing. Optics Letters, 45, 3941-3944(2020).

    [6] N SKRYABIN, A KALINKIN, I DYAKONOV et al. Femtosecond laser written depressed-cladding waveguide 2×2, 1×2 and 3×3 directional couplers in Tm3+:YAG crystal. Micromachines, 11, 1(2020).

    [7] Z S HOU, J J CAO, F YU et al. UV-NIR femtosecond laser hybrid lithography for efficient printing of complex on-chip waveguides. Optics Letters, 45, 1862-1865(2020).

    [8] V DE MICHELE, M ROYON, E MARIN et al. Near-IR- and UV-femtosecond laser waveguide inscription in silica glasses. Optical Materials Express, 9, 4624-4633(2019).

    [9] J HERNANDEZ-RUEDA, J CLARIJS, OOSTEN DVAN et al. The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica. Applied Physics Letters, 110, 161109(2017).

    [10] H LIU, G WANG, J JIANG et al. Sub-10-fs pulse generation from a blue laser-diode-pumped Ti:sapphire oscillator. Chinese Optics Letters, 18, 071402(2020).

    [11] H GU, Z QIN, G XIE et al. Generation of 131 fs mode-locked pulses from 2.8 μm Er:ZBLAN fiber laser. Chinese Optics Letters, 18, 031402(2020).

    [12] J IMBROCK, L WESEMANN, S KROESEN et al. Waveguide-integrated three-dimensional quasi-phase-matching structures. Optica, 7, 28-34(2020).

    [13] D WEI, C WANG, X XU et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals. Nature Communications, 10, 4193(2019).

    [14] S LIU, K SWITKOWSKI, C XU et al. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals. Nature Communications, 10, 3208(2019).

    [15] T XU, K SWITKOWSKI, X CHEN et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nature Photonics, 12, 591-595(2018).

    [16] D WEI, C WANG, H WANG et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics, 12, 596-600(2018).

    [17] J IMBROCK, H HANAFI, M AYOUB et al. Local domain inversion in MgO-doped lithium niobate by pyroelectric field-assisted femtosecond laser lithography. Applied Physics Letters, 113, 252901(2018).

    [18] X CHEN, P KARPINSKI, V SHVEDOV et al. Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides. Optics Letters, 41, 2410-2413(2016).

    [19] S KROESEN, K TEKCE, J IMBROCK et al. Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity. Applied Physics Letters, 107, 101109(2015).

    [20] X CHEN, P KARPINSKI, V SHVEDOV et al. Ferroelectric domain engineering by focused infrared femtosecond pulses. Applied Physics Letters, 107, 141102(2015).

    [21] A RÓDENAS, M GU, G CORRIELLI et al. Three-dimensional femtosecond laser nanolithography of crystals. Nature Photonics, 13, 105-109(2019).

    [22] L LI, W NIE, Z LI et al. Femtosecond laser writing of optical waveguides by self-induced multiple refocusing in LiTaO3 crystal. Journal of Lightwave Technology, 37, 3452-3458(2019).

    [23] J PBÉRUBÉ, J LAPOINTE, A DUPONT et al. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire. Optics Letters, 44, 37-40(2019).

    [24] F SIMA, K SUGIOKA, R M VÁZQUEZ et al. Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics, 7, 613-634(2018).

    [25] Y REN, L ZHANG, H XING et al. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal. Optics and Laser Technology, 103, 82-88(2018).

    [26] Z LI, Y ZHANG, C CHENG et al. 6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers. Optics Express, 26, 11321-11330(2018).

    [27] S ATZENI, A S RAB, G CORRIELLI et al. Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits. Optica, 5, 311-314(2018).

    [28] T MEANY, M GRÄFE, R HEILMANN et al. Laser written circuits for quantum photonics. Laser & Photonics Reviews, 9, 363-384(2015).

    [29] D CHOUDHURY, J R MACDONALD, A K KAR. Ultrafast laser inscription: perspectives on future integrated applications. Laser & Photonics Reviews, 8, 827-846(2014).

    [30] M C RECHTSMAN, J M ZEUNER, Y PLOTNIK et al. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [31] A CRESPI, R OSELLAME, R RAMPONI et al. Anderson localization of entangled photons in an integrated quantum walk. Nature Photonics, 7, 322-328(2013).

    [32] A CRESPI, R OSELLAME, R RAMPONI et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nature Photonics, 7, 545-549(2013).

    [33] K SUGIOKA, Y CHENG. Femtosecond laser three-dimensional micro- and nanofabrication. Applied Physics Reviews, 1, 041303(2014).

    [34] P WU, S ZHU, M HONG et al. Specklegram temperature sensor based on femtosecond laser inscribed depressed cladding waveguides in Nd:YAG crystal. Optics and Laser Technology, 113, 11-14(2019).

    [35] C ROMERO, J GARCÍA AJATES, F CHEN et al. Fabrication of tapered circular depressed-cladding waveguides in Nd:YAG crystal by femtosecond-laser direct inscription. Micromachines, 11, 10(2019).

    [36] B ZHANG, L LI, B WU et al. Femtosecond laser inscribed novel polarization beam splitters based on tailored waveguide configurations. Journal of Lightwave Technology, 39, 1438-1443(2021).

    [37] L LI, W NIE, Z LI et al. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications. Scientific Reports, 7, 7034(2017).

    [38] K M DAVIS, K MIURA, N SUGIMOTO et al. Writing waveguides in glass with a femtosecond laser. Optics Letters, 21, 1729-1731(1996).

    [39] Y YAO, W WANG, B ZHANG. Designing MMI structured beam-splitter in LiNbO3 crystal based on a combination of ion implantation and femtosecond laser ablation. Optics Express, 26, 19648-19656(2018).

    [40] S L LI, Y YE, C Y SHEN et al. Femtosecond laser inscribed cladding waveguide structures in LiNbO3 crystal for beam splitters. Optical Engineering, 57, 117103(2018).

    [41] J G AJATES, J R VÁZQUEZ DE ALDANA, F CHEN et al. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides. Optical Materials Express, 8, 1890-1901(2018).

    [42] J LV, Y CHENG, J R VÁZQUEZ DE ALDANA et al. Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 crystal. Journal of Lightwave Technology, 34, 3587-3591(2016).

    [43] J LV, Y CHENG, W YUAN et al. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal. Optical Materials Express, 5, 1274-1280(2015).

    [44] Z HUANG, C TU, S ZHANG et al. Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides written by femtosecond laser pulses. Optics Letters, 35, 877-879(2010).

    [45] S ZHANG, J YAO, Q SHI et al. Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses. Applied Physics Letters, 92, 231106(2008).

    [46] J THOMAS, M HEINRICH, J BURGHOFF et al. Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate. Applied Physics Letters, 91, 151108(2007).

    [47] R OSELLAME, M LOBINO, N CHIODO et al. Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient. Applied Physics Letters, 90, 241107(2007).

    [48] Y L LEE, N E YU, C JUNG et al. Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses. Applied Physics Letters, 89, 171103(2006).

    [49] J BURGHOFF, C GREBING, S NOLTE et al. Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate. Applied Physics Letters, 89, 081108(2006).

    [50] D A PRESTI, V GUAREPI, F VIDELA et al. Intensity modulator fabricated in LiNbO3 by femtosecond laser writing. Optics and Lasers in Engineering, 111, 222-226(2018).

    [51] S KROESEN, W HORN, J IMBROCK et al. Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing. Optics Express, 22, 23339-23348(2014).

    [52] W HORN, S KROESEN, J HERRMANN et al. Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing. Optics Express, 20, 26922-26928(2012).

    [53] S RINGLEB, K RADEMAKER, S NOLTE et al. Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses. Applied Physics B-Lasers and Optics, 102, 59-63(2011).

    [54] Y LIAO, J XU, Y CHENG et al. Fabrication of a Y-splitter modulator embedded in LiNbO3 with a femtosecond laser. Journal of Laser Micro/Nanoengineering, 5, 25-27(2010).

    [55] Y LIAO, J XU, Y CHENG et al. Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Optics Letters, 33, 2281-2283(2008).

    [56] M WANG, Y XU, Z FANG et al. On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes. Optics Express, 25, 124-129(2017).

    [57] W NIE, Y JIA, J R VÁZQUEZ DE ALDANA et al. Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription. Scientific Reports, 6, 22310(2016).

    [58] J BURGHOFF, S NOLTE, A TÜNNERMANN. Origins of waveguiding in femtosecond laser-structured LiNbO3. Applied Physics A, 89, 127-132(2007).

    [59] B ZHANG, B XIONG, Z LI et al. Mode tailoring of laser written waveguides in LiNbO3 crystals by multi-scan of femtosecond laser pulses. Optical Materials, 86, 571-575(2018).

    [60] F CHEN, J R VÁZQUEZ DE ALDANA. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser & Photonics Reviews, 8, 251-275(2014).

    [61] A RÓDENAS, L M MAESTRO, M O RAMÍREZ et al. Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides. Journal of Applied Physics, 106, 013110(2009).

    [62] R HE, Q AN, Y JIA et al. Femtosecond laser micromachining of lithium niobate depressed cladding waveguides. Optical Materials Express, 3, 1378-1384(2013).

    [63] B ZHANG, S HE, Q YANG et al. Femtosecond laser modification of 6H-SiC crystals for waveguide devices. Applied Physics Letters, 116, 111903(2020).

    [64] Kaiwen DING, Cong WANG, Zhi LUO et al. Principle and method of ultrafast laser beam shaping and its application in functional microstructure fabrication. Chinese Journal of Lasers, 48, 0202005(2021).

    [65] Lingling QIAO, Wei CHU, Zhe WANG et al. Three-dimensional microfabrication by shaped femtosecond laser pulses. Acta Optica Sinica, 39, 0126012(2019).

    [66] D TAN, Z WANG, B XU et al. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Advanced Photonics, 3, 024002(2021).

    [67] Bin ZHANG, Ziqi LI, Lei WANG et al. Research advances in laser crystal optical waveguides fabricated by femtosecond laser direct writing. Laser & Optoelectronics Progress, 57, 111415(2020).

    [68] Meng LI, Qian ZHANG, Dong YANG et al. Femtosecond laser writing of depressed cladding waveguide and its applications. Laser & Optoelectronics Progress, 57, 111427(2020).

    [69] Y JIA, S WANG, F CHEN. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electronic Advances, 3, 190042(2020).

    [70] Y CHENG, K SUGIOKA, K MIDORIKAWA et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Optics Letters, 28, 55-57(2003).

    [71] M AMS, G D MARSHALL, D J SPENCE et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Optics Express, 13, 5676-5681(2005).

    [72] S SOWA, W WATANABE, T TAMAKI et al. Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses. Optics Express, 14, 291-297(2006).

    [73] Y ZHANG, G CHENG, G HUO et al. The fabrication of circular cross-section waveguide in two dimensions with a dynamical slit. Laser Physics, 19, 2236-2241(2009).

    [74] G D MARSHALL, A POLITI, J C F MATTHEWS et al. Laser written waveguide photonic quantum circuits. Optics Express, 17, 12546-12554(2009).

    [75] J A DHARMADHIKARI, A K DHARMADHIKARI, A BHATNAGAR et al. Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser. Optics Communications, 284, 630-634(2011).

    [76] P ROLDÁN-VARONA, L RODRÍGUEZ-COBO, J M LÓPEZ-HIGUERA. Slit beam shaping technique for femtosecond laser inscription of symmetric cladding waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 27, 1-8(2021).

    [77] G CERULLO, R OSELLAME, S TACCHEO et al. Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing. Optics Letters, 27, 1938-1940(2002).

    [78] R OSELLAME, S TACCHEO, M MARANGONI et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams. Journal of the Optical Society of America B-Optical Physics, 20, 1559-1567(2003).

    [79] J P BÉRUBÉ, R VALLÉE. Femtosecond laser direct inscription of surface skimming waveguides in bulk glass. Optics Letters, 41, 3074-3077(2016).

    [80] J-PBÉRUBÉ , A LE CAMUS, S H MESSADDEQ et al. Femtosecond laser direct inscription of mid-IR transmitting waveguides in BGG glasses. Optical Materials Express, 7, ?3124-3135(2017).

    [81] C Y WANG, J GAO, X M JIN. On-chip rotated polarization directional coupler fabricated by femtosecond laser direct writing. Optics Letters, 44, 102-105(2019).

    [82] R R THOMSON, A S BOCKELT, E RAMSAY et al. Shaping ultrafast laser inscribed optical waveguides using a deformable mirror. Optics Express, 16, 12786-12793(2008).

    [83] F HE, H XU, Y CHENG et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Optics Letters, 35, 1106-1108(2010).

    [84] G H ZHU, HOWE JVAN, M DURST et al. Simultaneous spatial and temporal focusing of femtosecond pulses. Optics Express, 13, 2153-2159(2005).

    [85] P WANG, W CHU, W B LI et al. Aberration-insensitive three-dimensional micromachining in glass with spatiotemporally shaped femtosecond laser pulses. Optics Letters, 43, 3485-3488(2018).

    [86] Siyuan LIU, Jingyu ZHANG. Principles and applications of ultrafast laser processing based on spatial light modulators. Laser & Optoelectronics Progress, 57, 111431(2020).

    [87] C MAUCLAIR, A MERMILLOD-BLONDIN, N HUOT et al. Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction. Optics Express, 16, 5481-5492(2008).

    [88] X LONG, J BAI, W ZHAO et al. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams. Optics Letters, 37, 3138-3140(2012).

    [89] P S SALTER, A JESACHER, J B SPRING et al. Adaptive slit beam shaping for direct laser written waveguides. Optics Letters, 37, 470-472(2012).

    [90] L HUANG, P S SALTER, F PAYNE et al. Aberration correction for direct laser written waveguides in a transverse geometry. Optics Express, 24, 260371(2016).

    [91] Y LIAO, J QI, P WANG et al. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam. Scientific Reports, 6, 28790(2016).

    [92] J QI, P WANG, Y LIAO et al. Fabrication of polarization-independent single-mode waveguides in lithium niobate crystal with femtosecond laser pulses. Optical Materials Express, 6, 2554-2559(2016).

    [93] P WANG, J QI, Z LIU et al. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing. Scientific Reports, 7, 41211(2017).

    [94] Q ZHANG, D YANG, J QI et al. Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering. Optics Express, 25, 13263-13270(2017).

    [95] Q ZHANG, M LI, J XU et al. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering. Photonics Research, 7, 503-507(2019).

    [96] Z-Z LI, X-Y LI, F YU et al. Circular cross section waveguides processed by multi-foci-shaped femtosecond pulses. Optics Letters, 46, 520-523(2021).

    Bin ZHANG, Lei WANG, Yuechen JIA, Feng CHEN. Research Advances of Optical Waveguides by Light-manipulation Based Femtosecond Laser Writing(Invited)[J]. Acta Photonica Sinica, 2022, 51(1): 0151106
    Download Citation