
- Chinese Optics Letters
- Vol. 20, Issue 5, 053601 (2022)
Abstract
1. Introduction
Hydrogen (H2) has attracted lots of attention as a future energy source, especially due to its high energy-density, carbon-free, and pollution-free characteristics[
Electrical H2 gas sensors with an electrical readout employ the change in electrical conductivity upon H2 absorption in metal. However, such electrical sensors can only show enhanced sensitivity at high working temperatures, thus raising safety issues. Alternatively, in optical sensing schemes, the change in reflectance and/or transmittance of H2-absorbing materials is detected[
In contrast with other materials solving hydrogen sensitivity such as tungsten trioxide (
Sign up for Chinese Optics Letters TOC. Get the latest issue of Chinese Optics Letters delivered right to you!Sign up now
In recent years, two main types of Pd-based H2 sensors are thin films and plasmonic nanoparticles[
In the present work, we demonstrate an optical fiber H2 gas sensor consisting of a commercial multi-mode optical fiber and a metasurface attached to the fiber tip. The optimized metasurface is composed of a layer of Pd nanoantennas suspended above a gold (Au) mirror layer. The reflectance of the Pd-based metasurface is
2. Methods
Figure 1(a) presents the schematic of the H2 sensing metasurface architecture. In this design, promising geometry consists of an array of Pd nanostructures, which is separated by a dielectric spacer layer from the Au film. The Au film, here, acts as a mirror, and the magnesium fluoride (
Figure 1.(a) Schematic of the Pd-based metasurface considered in this study. Pd nanodisks are separated from an Au mirror by a dielectric spacer layer (magnesium fluoride, MgF2). Upon H2 absorption, the dielectric function and the size of the Pd nanodisks change, leading to a change in the reflectance spectrum of the structure. (b) The H2 sensor is composed by a metasurface and a fiber flange plate that serves as a connector to the optical fiber. Inset: cross section of the fiber flange plate and the detail of the metasurface next to the fiber tip.
Using this nanostructure layout and optical fiber-based readout mechanism, the optical reflectance
3. Results and Discussions
Numerical calculations with the finite difference time domain (FDTD) method have been carried out to gain better insight into the reflectance of the Pd nanoantennas. To investigate the behavior of the reflectance difference
Figure 2 presents a pseudocolor plot of the reflectance difference
Figure 2.Calculated reflectance difference spectra for varying Pd disk diameters and spacer thicknesses, for a disk thickness of 20 nm and period of 360 nm.
To explore the difference between Pd film and Pd metasurface during the progress of hydrogenation, Fig. 3 shows the reflectance of Pd (red line) as a function of varying wavelengths of incident light. Additionally, the wavelength spectrum of the reflectance of Pd hydride (black line), which considered the parameters of the
Figure 3.Calculation of the reflectance of the Pd (red dot line) and Pd hydride (black double-dot dash line) as a function of incident wavelength.
Figure 4(a) presents the wavelength spectra of reflectance as a function of varying thicknesses of the spacer layer
Figure 4.Calculation of the reflectance with the varying thicknesses of the spacer layer and incident wavelength for (a) Pd disk and (b) Pd hydride disk. (c) Calculation of the reflectance difference with the varying thicknesses of the spacer layer and incident wavelength when the phase transition has happened.
The positions of two exemplary
A further simulation was performed to investigate the influence of the mode field distribution of the optical fiber. The mode field distribution was firstly calculated when the wavelength of incident light is 1300 nm using the COMSOL Multiphysics for influence evaluation. As the results show, the diameter of the mode field distribution is
4. Conclusion
The simple optical fiber readout mechanism and an optimization of the Pd-based metasurface, which is next to the fiber tip, have been demonstrated. Suitable parameters of the metasurface, including diameter
References
[1] X. She, Y. Shen, J. Wang, C. Jin. Pd films on soft substrates: a visual, high-contrast and low-cost optical hydrogen sensor. Light Sci. Appl., 8, 4(2019).
[2] M. Xiao, S. Liang, J. Han, D. Zhong, J. Liu, Z. Zhang, L. Peng. Batch fabrication of ultrasensitive carbon nanotube hydrogen sensors with sub-ppm detection limit. ACS sensors, 3, 749(2018).
[3] S. Pascuzzi, I. Blanco, A. S. Anifantis, G. Scarascia-Mugnozza. Hazards assessment and technical actions due to the production of pressured hydrogen within a pilot photovoltaic-electrolyser-fuel cell power system for agricultural equipment. J. Agr. Eng., 47, 88(2016).
[4] S. A. Chowdhury, R. Correia, D. Francis, S. J. Brooks, B. J. Jones, A. W. Thompson, J. Hodgkinson, R. P. Tatam. An optical fiber hydrogen sensor using a palladium-coated ball lens. J. Lightwave Tech., 33, 2535(2015).
[5] F. A. A. Nugroho, I. Darmadi, L. Cusinato, A. Susarrey-Arce, H. Schreuders, L. J. Bannenberg, A. B. da Silva Fanta, S. Kadkhodazadeh, J. B. Wagner, T. J. Antosiewicz, A. Hellman, V. P. Zhdanov, B. Dam, C. Langhammer. Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nat. Mater., 18, 489(2019).
[6] A. Baldi, T. C. Narayan, A. L. Koh, J. A. Dionne. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater., 13, 1143(2014).
[7] M. Aleixandre, P. Corredera, M. L. Hernanz, J. Gutierrez-Monreal. Development of fiber optic hydrogen sensors for testing nuclear waste repositories. Sens. Actuat. B Chem., 107, 113(2005).
[8] H. Guo, J. Tang, X. Li, Y. Zheng, H. Yu, H. Yu. On-line writing identical and weak fiber Bragg grating arrays. Chin. Opt. Lett., 11, 030602(2013).
[9] J. Dai, L. Zhu, G. Wang, F. Xiang, Y. Qin, M. Wang, M. Yang. Optical fiber grating hydrogen sensors: a review. Sensors, 17, 577(2017).
[10] X. Zhang, J. Xiong, F. Gu, J. Li, W. Wang, F. Pang, T. Wang. Fabrication and sensing characteristics of intrinsic Fabry–Perot interferometers in fiber tapers. Chin. Opt. Lett., 13, 120602(2015).
[11] Z. L. Poole, P. R. Ohodnicki, A. Yan, Y. Lin, K. P. Chen. Potential to detect hydrogen concentration gradients with palladium infused mesoporous-titania on D-shaped optical fiber. ACS sensors, 2, 87(2017).
[12] J. Dai, M. Yang, Y. Chen, K. Cao, H. Liao, P. Zhang. Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials. Opt. Express, 19, 6141(2011).
[13] M. Divagar, A. Gowri, S. John, V. V. R. Sai. Graphene oxide coated U-bent plastic optical fiber based chemical sensor for organic solvents. Sens. Actuat. B Chem., 262, 1006(2018).
[14] E. Navarrete, C. Bittencourt, P. Umek, D. Cossement, F. Güell, E. Llobet. Tungsten trioxide nanowires decorated with iridium oxide nanoparticles as gas sensing material. J. Alloy. Com., 812, 152156(2020).
[15] K. Anand, O. Singh, M. P. Singh, J. Kaur, R. C. Singh. Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuat. B Chem., 195, 409(2014).
[16] C. Wadell, S. Syrenova, C. Langhammer. Plasmonic hydrogen sensing with nanostructured metal hydrides. ACS Nano, 8, 11925(2014).
[17] F. Sterl, N. Strohfeldt, S. Both, E. Herkert, T. Weiss, H. Giessen. Design principles for sensitivity optimization in plasmonic hydrogen sensors. ACS sensors, 5, 917(2020).
[18] S. Cai, A. Gonzalez-Vila, X. Zhang, T. Guo, C. Caucheteur. Palladium-coated plasmonic optical fiber gratings for hydrogen detection. Opt. Lett., 44, 4483(2019).
[19] W. Chen, J. Niu, I. Liu, H. Chen, S. Cheng, K. Lin, W. Liu. Hydrogen sensing properties of a novel GaN/AlGaN Schottky diode decorated with palladium nanoparticles and a platinum thin film. Sens. Actuat. B Chem., 330, 129339(2021).
[20] N. Strohfeldt, A. Tittl, H. Giessen. Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications. Opt. Mater. Express, 3, 194(2013).
[21] A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, H. Giessen. Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano lett., 11, 4366(2011).
[22] S. Chatterjee, E. Shkondin, O. Takayama, A. Fisher, A. Fraiwan, U. A. Gurkan, A. V. Lavrinenko, G. Strangi. Hydrogen gas sensing using aluminum doped ZnO metasurfaces. Nanoscale Adv., 2, 3452(2020).
[23] T. Beni, N. Yamasaku, T. Kurotsu, N. To, S. Okazaki, T. Arakawa, A. Balcytis, G. Seniutinas, S. Juodkazis, Y. Nishijima. Metamaterial for hydrogen sensing. ACS sensors, 4, 2389(2019).
[24] S. Cai, F. Liu, R. Wang, Y. Xiao, K. Li, C. Caucheteur, T. Guo. Narrow bandwidth fiber-optic spectral combs for renewable hydrogen detection. Sci. China Inf. Sci., 63, 222401(2020).
[25] Y. Nishijima, T. Kurotsu, N. Yamasaku, H. Takahashii, K. Kurihara, T. Beni, S. Okazaki, T. Arakawa, A. Balčytis, G. Seniutinas. Improvement and stabilization of optical hydrogen sensing ability of Au-Pd alloys. Opt. Express, 28, 25383(2020).
[26] Y. Nishijima, S. Shimizu, K. Kurihara, Y. Hashimoto, H. Takahashi, A. Balčytis, G. Seniutinas, S. Okazaki, J. Juodkazytė, T. Iwasa, T. Taketsugu, Y. Tominaga, S. Juodkazis. Optical readout of hydrogen storage in films of Au and Pd. Opt. Express, 25, 24081(2017).
[27] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308(2015).
[28] T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, H. Giessen. Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates. J. Opt. Soc. Am. A, 28, 238(2011).
[30] M. Khanuja, B. R. Mehta, P. Agar, P. K. Kulriya, D. K. Avasthi. Hydrogen induced lattice expansion and crystallinity degradation in palladium nanoparticles: effect of hydrogen concentration, pressure, and temperature. J. Appl. Phys., 106, 093515(2009).
[31] S. Syrenova, C. Wadell, F. A. Nugroho, T. A. Gschneidtner, Y. A. D. Fernandez, G. Nalin, D. Switlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov. Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape. Nat. Mater., 14, 1236(2015).
[32] R. Griessen, N. Strohfeldt, H. Giessen. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nat. Mater., 15, 311(2016).
[33] C. Bian, M. Li, W. Cao, M. Hu, Z. Chu, R. Wang. Robust integration of nitrogen-vacancy centers in nanodiamonds to optical fiber and its application in all-optical thermometry. Chin. Opt. Lett., 19, 120601(2021).

Set citation alerts for the article
Please enter your email address