• Acta Photonica Sinica
  • Vol. 51, Issue 5, 0551304 (2022)
Renhao FAN, Benqi HOU, Ruwen PENG*, and Mu WANG
Author Affiliations
  • National Laboratory of Solid State Microstructures and School of Physics,Nanjing University,Nanjing 210093,China
  • show less
    DOI: 10.3788/gzxb20225105.0551304 Cite this Article
    Renhao FAN, Benqi HOU, Ruwen PENG, Mu WANG. Dynamically Tunable Optical Materials and Devices Based on Phase Transition of Vanadium Dioxide(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551304 Copy Citation Text show less
    References

    [1] H XU, E J BJERNELD, M KÄLL et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical Review Letters, 83, 4357-4360(1999).

    [2] W L BARNES, A DEREUX, T W EBBESEN. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [3] J A SCHULLER, E S BARNARD, W CAI et al. Plasmonics for extreme light concentration and manipulation. Nature Materials, 9, 193-204(2010).

    [4] H WEI, F HAO, Y HUANG et al. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Letters, 8, 2497-2502(2008).

    [5] Y H CHEN, L HUANG, L GAN et al. Wavefront shaping of infrared light through a subwavelength hole. Light: Science & Applications, 1, e26(2012).

    [6] Z H TANG, R W PENG, Z WANG et al. Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays. Physical Review B, 76, 195405(2007).

    [7] Y J BAO, R W PENG, D J SHU et al. Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array. Physical Review Letters, 101, 087401(2008).

    [8] J B PENDRY, A J HOLDEN, W J STEWART et al. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76, 4773-4776(1996).

    [9] J B PENDRY, A J HOLDEN, D J ROBBINS et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).

    [10] S XIAO, V P DRACHEV, A V KILDISHEV et al. Loss-free and active optical negative-index metamaterials. Nature, 466, 735-738(2010).

    [11] S C JIANG, X XIONG, Y S HU et al. Controlling the polarization state of light with a dispersion-free metastructure. Physical Review X, 4, 021026(2014).

    [12] N YU, P GENEVET, M A KATS et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [13] S SUN, Q HE, S XIAO et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials, 11, 426-431(2012).

    [14] A V KILDISHEV, A BOLTASSEVA, V M SHALAEV. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [15] S CHEN, Z LI, W LIU et al. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces. Advanced Materials, 31, 1802458(2019).

    [16] Y J GAO, X XIONG, Z H WANG et al. Simultaneous generation of arbitrary assembly of polarization states with geometrical-scaling-induced phase modulation. Physical Review X, 10, 031035(2020).

    [17] R H FAN, B XIONG, R W PENG et al. Constructing metastructures with broadband electromagnetic functionality. Advanced Materials, 32, 1904646(2020).

    [18] R A SHELBY, D R SMITH, S SCHULTZ. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [19] X XIONG, W H SUN, Y J BAO et al. Construction of a chiral metamaterial with a U-shaped resonator assembly. Physical Review B, 81, 075119(2010).

    [20] B PENDRY, D SCHURIG, D R SMITH. Controlling electromagnetic fields. Science, 312, 1780-1782(2006).

    [21] J Z ZHAO, D L WANG, R W PENG et al. Watching outside while under a carpet cloak of invisibility. Physical Review E, 84, 046607(2011).

    [22] D LIU, Y L HONG, R H FAN et al. Bendable disordered metamaterials for broadband terahertz invisibility. Optics Express, 28, 3552-3560(2020).

    [23] J LUO, H C CHU, R W PENG et al. Ultra-broadband reflectionless Brewster absorber protected by reciprocity. Light- Science & Applications, 10, 89(2021).

    [24] S ZHANG, D A GENOV, Y WANG et al. Plasmon-induced transparency in metamaterials. Physical Review Letters, 101, 047401(2008).

    [25] L QIN, K ZHANG, R W PENG et al. Optical-magnetism-induced transparency in a metamaterial. Physical Review B, 87, 125136(2013).

    [26] K ZHANG, C WANG, L QIN et al. Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial. Optics Letters, 39, 3539-3542(2014).

    [27] X R HUANG, R W PENG, R H FAN. Making metals transparent for white light by spoof surface plasmons. Physical Review Letters, 105, 243901(2010).

    [28] R H FAN, R W PENG, X R HUANG et al. Transparent metals for ultrabroadband electromagnetic waves. Advanced Materials, 24, 1980-1986(2012).

    [29] R H FAN, J LI, R W PENG et al. Oblique metal gratings transparent for broadband terahertz waves. Applied Physics Letters, 102, 171904(2013).

    [30] N I ZHELUDEV, Y S KIVSHAR. From metamaterials to metadevices. Nature Materials, 11, 917-924(2012).

    [31] A NEMATI, Q WANG, M HONG et al. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electronic Advances, 1, 180009(2018).

    [32] F Z SHU, R H FAN, J N WANG et al. Advances in dynamically tunable plasmonic materials and devices. Acta Physica Sinica, 68, 147303(2019).

    [33] Q HE, S SUN, L ZHOU. Tunable/reconfigurable metasurfaces: physics and applications. Research, 2019, 1849272(2019).

    [34] Y CHE, X WANG, Q SONG et al. Tunable optical metasurfaces enabled by multiple modulation mechanisms. Nanophotonics, 9, 4407-4431(2020).

    [35] H CHENG, S CHEN, P YU et al. Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces. Advanced Optical Materials, 3, 1744-1749(2015).

    [36] B XIONG, Y H XU, J N WANG et al. Realizing colorful holographic mimicry by metasurfaces. Advanced Materials, 33, 2005864(2021).

    [37] N K EMANI, T F CHUNG, X NI et al. Electrically tunable damping of plasmonic resonances with graphene. Nano Letters, 12, 5202-5206(2012).

    [38] Y YAO, M A KATS, P GENEVET et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Letters, 13, 1257-1264(2013).

    [39] H CHENG, S CHEN, P YU et al. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial. Applied Physics Letters, 103, 223102(2013).

    [40] Y ZHOU, C WANG, D H XU et al. Tuning the dispersion relation of a plasmonic waveguide via graphene contact. Europhysics Letters, 107, 34007(2014).

    [41] Y ZHOU, Y Q DONG, R H FAN et al. Asymmetric transmission of terahertz waves through a graphene-loaded metal grating. Applied Physics Letters, 105, 041114(2014).

    [42] H T CHEN, W J PADILLA, J M O ZIDE et al. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [43] H JING, R W PENG, R M MA et al. Flexible ultrathin single-crystalline perovskite photodetector. Nano Letters, 20, 7144-7151(2020).

    [44] Y W HUANG, H W H LEE, R SOKHOYAN et al. Gate-tunable conducting oxide metasurfaces. Nano Letters, 16, 5319-5325(2016).

    [45] J PARK, J H KANG, S J KIM et al. Dynamic reflection phase and polarization control in metasurfaces. Nano Letters, 17, 407-413(2017).

    [46] M Z ALAM, S A SCHULZ, J UPHAM et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nature Photonics, 12, 79-83(2018).

    [47] X WANG, D H KWON, D H WERNER et al. Tunable optical negative-index metamaterials employing anisotropic liquid crystals. Applied Physics Letters, 91, 143122(2007).

    [48] A E CETIN, A MERTIRI, M HUANG et al. Thermal tuning of surface plasmon polaritons using liquid crystals. Advanced Optical Materials, 1, 915-920(2013).

    [49] A ABASS, S R RODRIGUEZ, T AKO et al. Active liquid crystal tuning of metallic nanoantenna enhanced light emission from colloidal quantum dots. Nano Letters, 14, 5555-5560(2014).

    [50] M X REN, W WU, W CAI et al. Reconfigurable metasurfaces that enable light polarization control by light. Light: Science & Applications, 6, e16254(2017).

    [51] K ZHANG, W B SHI, D WANG et al. Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity. Applied Physics Letters, 108, 193111(2016).

    [52] B XIONG, J N WANG, R W PENG et al. Construct achromatic polymer microlens for high-transmission full-color imaging. Advanced Optical Materials, 9, 2001524(2020).

    [53] L H NICHOLLS, F J RODŔIGUEZ-FORTUÑO, M E NASIR et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nature Photonics, 11, 628-633(2017).

    [54] X YIN, M SCHÄFERLING, A K U MICHEL et al. Active chiral plasmonics. Nano Letters, 15, 4255-4260(2015).

    [55] Q WANG, E T F ROGERS, B GHOLIPOUR et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photonics, 10, 60-65(2016).

    [56] A TITTL, A U MICHEL, M SCHÄFERLING et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Advanced Materials, 27, 4597-4603(2015).

    [57] J TIAN, H LUO, Y YANG et al. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nature Communications, 10, 396(2019).

    [58] F GAO, D LI, R W PENG et al. Tunable interference of light behind subwavelength apertures. Applied Physics Letters, 95, 011104(2009).

    [59] R H FAN, Y ZHOU, X P REN et al. Freely tunable broadband polarization rotator for terahertz waves. Advanced Materials, 27, 1201-1206(2015).

    [60] N I ZHELUDEV, E PLUM. Reconfigurable nanomechanical photonic metamaterials. Nature Nanotechnology, 11, 16-22(2016).

    [61] Z WANG, L JING, K YAO et al. Origami-based reconfigurable metamaterials for tunable chirality. Advanced Materials, 29, 1700412(2017).

    [62] F Z SHU, F F YU, R W PENG et al. Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Advanced Optical Materials, 6, 1700939(2018).

    [63] T XU, E C WALTER, A AGRAWAL et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nature Communications, 7, 10479(2016).

    [64] X DUAN, S KAMIN, N LIU. Dynamic plasmonic colour display. Nature Communications, 8, 14606(2017).

    [65] M L TSENG, J YANG, M SEMMLINGER et al. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response. Nano Letters, 17, 6034-6039(2017).

    [66] F Z SHU, J N WANG, R W PENG et al. Electrically driven tunable broadband polarization states via active metasurfaces based on joule-heat-induced phase transition of vanadium dioxide. Laser & Photonics Reviews, 15, 2100155(2021).

    [67] Z Y JIA, F Z SHU, Y J GAO et al. Dynamically switching the polarization state of light based on the phase transition of vanadium dioxide. Physical Review Applied, 9, 034009(2018).

    [68] J N WANG, B XIONG, R W PENG et al. Flexible phase change materials for electrically-tuned active absorbers. Small, 17, 2101282(2021).

    [69] X LIU, Q WANG, X ZHANG et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface. Advanced Optical Materials, 7, 1900175(2019).

    [70] K J MILLER, R F HAGLUND, S M WEISS. Optical phase change materials in integrated silicon photonic devices: review. Optical Materials Express, 8, 2415-2429(2018).

    [71] J N WANG, B XIONG, Y LIU et al. Continuously and reversibly electro-tunable optical nanoantennas based on phase transition of vanadium dioxide. New Journal of Physics, 23, 075002(2021).

    [72] F Z SHU, L H ZHANG, J N WANG et al. Dynamically tunable bowtie nanoantennas based on the phase transition of vanadium dioxide. Optics Letters, 44, 2752-2755(2019).

    [73] N JIANG, X ZHUO, J WANG. Active plasmonics: principles, structures and applications. Chemical Reviews, 118, 3054-3099(2018).

    [74] F LAIBLE, D A GOLLMER, S DICKREUTER et al. Continuous reversible tuning of the gap size and plasmonic coupling of bow tie nanoantennas on flexible substrates. Nanoscale, 10, 14915-14922(2018).

    [75] Z YANG, C KO, S RAMANATHAN. Oxide electronics utilizing ultrafast metal-insulator transitions. Annual Review of Materials Research, 41, 337-367(2011).

    [76] K LIU, S LEE, S YANG et al. Recent progresses on physics applications of vanadium dioxide. Materials Today, 21, 875-896(2018).

    [77] R SHI, N SHEN, J WANG et al. Recent advances in fabrication strategies, phase transition modulation, and advanced applications of vanadium dioxide. Applied Physics Reviews, 6, 011312(2019).

    [78] S CUEFF, J JOHN, Z ZHANG et al. VO2 nanophotonics. APL Photonics, 5, 110901(2020).

    [79] Z GONG, F YANG, L WANG et al. Phase change materials in photonic devices. Journal of Applied Physics, 129, 030902(2021).

    [80] C WU, F FENG, Y XIE. Design of vanadium oxide structures with controllable electrical properties for energy applications. Chemical Society Reviews, 42, 5157-5183(2013).

    [81] A L PERGAMENT, G B STEFANOVICH, A A VELICHKO. Oxide electronics and vanadium dioxide perspective: a review. IEEE Journal on Selected Topics in Nano Electronics and Computing, 1, 24-43(2013).

    [82] M LIU, B SU, Y TANG et al. Recent advances in nanostructured vanadium oxides and composites for energy conversion. Advanced Energy Materials, 7, 1700885(2017).

    [83] D W FERRARA, J NAG, E R MACQUARRIE et al. Plasmonic probe of the semiconductor to metal phase transition in vanadium dioxide. Nano Letters, 13, 4169-4175(2013).

    [84] H T KIM, B G CHAE, D H YOUN et al. Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices. Applied Physics Letters, 86, 242101(2005).

    [85] M LIU, H Y HWANG, H TAO et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 487, 345-348(2012).

    [86] S A MAIER. Plasmonics: fundamentals, applications(2007).

    [87] N J HALAS, S LAL, W S CHANG et al. Plasmons in strongly coupled metallic nanostructures. Chemical Reviews, 111, 3913-3961(2011).

    [88] L LIU, L KANG, T S MAYER et al. Hybrid metamaterials for electrically triggered multifunctional control. Nature Communications, 7, 13236(2016).

    [89] H W VERLEUR, A S BARKER, C N BERGLUND. Optical properties of VO2 between 0.25 and 5 eV. Physical Review, 172, 788-798(1968).

    [90] K LIU, C CHENG, Z CHENG et al. Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs. Nano Letters, 12, 6302-6308(2012).

    [91] K LIU, C CHENG, J SUH et al. Powerful, multifunctional torsional micromuscles activated by phase transition. Advanced Materials, 26, 1746-1750(2014).

    [92] T WANG, D TORRES, F E FERNÁNDEZ et al. Maximizing the performance of photothermal actuators by combining smart materials with supplementary advantages. Science Advances, 3, e1602697(2017).

    [93] H MA, J HOU, X WANG et al. Flexible, all-inorganic actuators based on vanadium dioxide and carbon nanotube bimorphs. Nano Letters, 17, 421-428(2017).

    [94] J JEONG, N AETUKURI, T GRAF et al. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science, 339, 1402-1405(2013).

    [95] C WU, X ZHANG, J DAI et al. Direct hydrothermal synthesis of monoclinic VO2(M) single-domain nanorods on large scale displaying magnetocaloric effect. Journal of Materials Chemistry, 21, 4509-4517(2011).

    [96] Y KE, S WANG, G LIU et al. Vanadium dioxide: the multistimuli responsive material and its applications. Small, 14, 1802025(2018).

    [97] C WAN, Z ZHANG, D WOOLF et al. On the optical properties of thin-film vanadium dioxide from the visible to the far infrared. Annalen Der Physik, 531, 1900188(2019).

    [98] J JOHN, Y GUTIERREZ, Z ZHANG et al. Multipolar resonances with designer tunability using VO2 phase-change materials. Physical Review Applied, 13, 044053(2020).

    [99] T DRISCOLL, H T KIM, B G CHAE et al. Memory metamaterials. Science, 325, 1518-1521(2009).

    [100] S HORMOZ, S RAMANATHAN. Limits on vanadium oxide Mott metal-insulator transition field-effect transistors. Solid-State Electronics, 54, 654-659(2010).

    [101] K APPAVOO, R F HAGLUND. Polarization selective phase-change nanomodulator. Scientific Reports, 4, 6771(2014).

    [102] J D RYCKMAN, K A HALLMAN, R E MARVEL et al. Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition. Optics Express, 21, 10753-10763(2013).

    [103] S Y LI, G A NIKLASSON, C G GRANQVIST. Thermochromic fenestration with VO2-based materials: Three challenges and how they can be met. Thin Solid Films, 520, 3823-3828(2012).

    [104] R M BRIGGS, I M PRYCE, H A ATWATER. Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Optics Express, 18, 11192-11201(2010).

    [105] P MARKOV, R E MARVEL, H J CONLEY et al. Optically monitored electrical switching in VO2. ACS Photonics, 2, 1175-1182(2015).

    [106] C LI, X HU, W GAO et al. Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator. Advanced Optical Materials, 6, 1701071(2018).

    [107] J RENSBERG, S ZHANG, Y ZHOU et al. Active optical metasurfaces based on defect-engineered phase-transition materials. Nano Letters, 16, 1050-1055(2016).

    [108] F J MORIN. Oxides which show a metal-to-insulator transition at the Neel temperature. Physical Review Letters, 3, 34-36(1959).

    [109] D WEGKAMP, J STÄHLER. Ultrafast dynamics during the photoinduced phase transition in VO2. Progress in Surface Science, 90, 464-502(2015).

    [110] J B GOODENOUGH. The two components of the crystallographic transition in VO2. Journal of Solid State Chemistry, 3, 490-500(1971).

    [111] M MAREZIO, D B MCWHAN, J P REMEIKA et al. Structural aspects of the metal-insulator transitions in Cr-doped VO2. Physical Review B, 5, 2541-2551(1972).

    [112] X WANG, K DONG, H S CHOE et al. Multifunctional microelectro-opto-mechanical platform based on phase-transition materials. Nano Letters, 18, 1637-1643(2018).

    [113] N B AETUKURI, A X GRAY, M DROUARD et al. Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy. Nature Physics, 9, 661-666(2013).

    [114] A ZYLBERSZTEJN, N F MOTT. Metal-insulator transition in vanadium dioxide. Physical Review B, 11, 4383-4395(1975).

    [115] M CAPELLO, F BECCA, M FABRIZIO et al. Variational description of Mott insulators. Physical Review Letters, 94, 026406(2005).

    [116] J M TOMCZAK, F ARYASETIAWAN, S BIERMANN. Effective bandstructure in the insulating phase versus strong dynamical correlations in metallic VO2. Physical Review B, 78, 115103(2008).

    [117] B LAZAROVITS, K KIM, K HAULE et al. Effects of strain on the electronic structure of VO2. Physical Review B, 81, 115117(2010).

    [118] C WEBER, D D O’REGAN, N D M HINE et al. Vanadium dioxide: A Peierls-Mott insulator stable against disorder. Physical Review Letters, 108, 256402(2012).

    [119] J H PARK, J M COY, T S KASIRGA et al. Measurement of a solid-state triple point at the metal-insulator transition in VO2. Nature, 500, 431-434(2013).

    [120] J D BUDAI, J HONG, M E MANLEY et al. Metallization of vanadium dioxide driven by large phonon entropy. Nature, 515, 535-539(2014).

    [121] S LEE, K HIPPALGAONKAR, F YANG et al. Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science, 355, 371-374(2017).

    [122] D LEE, B CHUNG, Y SHI et al. Isostructural metal-insulator transition in VO2. Science, 362, 1037-1040(2018).

    [123] S KAWATA, Y INOUYE, P VERMA. Plasmonics for near-field nano-imaging and superlensing. Nature Photonics, 3, 388-394(2009).

    [124] R E MARVEL, K APPAVOO, B K CHOI et al. Electron-beam deposition of vanadium dioxide thin films. Applied Physics A-Materials Science & Processing, 111, 975-981(2013).

    [125] M M QAZILBASH, M BREHM, B G CHAE et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science, 318, 1750-1753(2007).

    [126] M A KATS, R BLANCHARD, S ZHANG et al. Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance. Physical Review X, 3, 041004(2013).

    [127] A FIORINO, D THOMPSON, L ZHU et al. A thermal diode based on nanoscale thermal radiation. ACS Nano, 12, 5774-5779(2018).

    [128] K TANG, X WANG, K DONG et al. A thermal radiation modulation platform by emissivity engineering with graded metal–insulator transition. Advanced Materials, 32, 1907071(2020).

    [129] J B K KANA, J M NDJAKA, G VIGNAUD et al. Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry. Optics Communications, 284, 807-812(2011).

    [130] Y GAO, H LUO, Z ZHANG et al. Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing. Nano Energy, 1, 221-246(2012).

    [131] S Y LI, G A NIKLASSON, C G GRANQVIST. Thermochromic fenestration with VO2-based materials: three challenges and how they can be met. Thin Solid Films, 520, 3823-3828(2012).

    [132] C WAN, E H HORAK, J KING et al. Limiting optical diodes enabled by the phase transition of vanadium dioxide. ACS Photonics, 5, 2688-2692(2018).

    [133] G STEFANOVICH, A PERGAMENT, D STEFANOVICH. Electrical switching and Mott transition in VO2. Journal of Physics: Condensed Matter, 12, 8837-8845(2000).

    [134] H T KIM, B G CHAE, D H YOUN et al. Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices. New Journal of Physics, 6, 52(2004).

    [135] M J LEE, Y PARK, D S SUH et al. Two series oxide resistors applicable to high speed and high density nonvolatile memory. Advanced Materials, 19, 3919-3923(2007).

    [136] T DRISCOLL, H T KIM, B G CHAE et al. Phase-transition driven memristive system. Applied Physics Letters, 95, 043503(2009).

    [137] D RUZMETOV, G GOPALAKRISHNAN, C KO et al. Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer. Journal of Applied Physics, 107, 114516(2010).

    [138] M NAKANO, K SHIBUYA, D OKUYAMA et al. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature, 487, 459-462(2012).

    [139] T YAJIMA, T NISHIMURA, A TORIUMI. Positive-bias gate-controlled metal-insulator transition in ultrathin VO2 channels with TiO2 gate dielectrics. Nature Communications, 6, 10104(2015).

    [140] S KUMAR, M D PICKETT, J P STRACHAN et al. Local temperature redistribution and structural transition during Joule-heating-driven conductance switching in VO2. Advanced Materials, 25, 6128-6132(2013).

    [141] A ZIMMERS, L AIGOUY, M MORTIER et al. Role of thermal heating on the voltage induced insulator-metal transition in VO2. Physical Review Letters, 110, 056601(2013).

    [142] H LI, H PENG, C JI et al. Electrically tunable mid-infrared antennas based on VO2. Journal of Modern Optics, 65, 1809-1816(2018).

    [143] C ZHANG, G ZHOU, J WU et al. Active control of terahertz waves using vanadium-dioxide-embedded metamaterials. Physical Review Applied, 11, 054016(2019).

    [144] A CAVALLERI, CS TÓTH, C W SIDERS et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Physical Review Letters, 87, 237401(2001).

    [145] C KÜBLER, H EHRKE, R HUBER et al. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2. Physical Review Letters, 99, 116401(2007).

    [146] P BAUM, D S YANG, A H ZEWAIL. 4D visualization of transitional structures in phase transformations by electron diffraction. Science, 318, 788-792(2007).

    [147] Z TAO, T T HAN, S D MAHANTI et al. Decoupling of structural and electronic phase transitions in VO2. Physical Review Letters, 109, 166406(2012).

    [148] V R MORRISON, R P CHATELAIN, K L TIWARI et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science, 346, 445-448(2014).

    [149] K APPAVOO, B WANG, N F BRADY et al. Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. Nano Letters, 14, 1127-1133(2014).

    [150] S WALL, S YANG, L VIDAS et al. Ultrafast disordering of vanadium dimers in photoexcited VO2. Science, 362, 572-576(2018).

    [151] R H FAN, L H ZHU, R W PENG et al. Broadband antireflection and light-trapping enhancement of plasmonic solar cells. Physical Review B, 87, 195444(2013).

    [152] W B SHI, L Z LIU, R W PENG et al. Strong localization of surface plasmon polaritons with engineered disorder. Nano Letters, 18, 1896-1902(2018).

    [153] Y Y ZHU, H JING, R W PENG et al. Realizing Anderson localization of surface plasmon polaritons and enhancing their interactions with excitons in 2D disordered nanostructures. Applied Physics Letters, 116, 201106(2020).

    [154] J Y SUH, E U DONEV, R LOPEZ et al. Modulated optical transmission of subwavelength hole arrays in metal- VO2 films. Applied Physics Letters, 88, 133115(2006).

    [155] M A KATS, R BLANCHARD, P GENEVET et al. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Optics Letters, 38, 368-370(2013).

    [156] S K EARL, T D JAMES, T J DAVIS et al. Tunable optical antennas enabled by the phase transition in vanadium dioxide. Optics Express, 21, 27503-27508(2013).

    [157] H MATSUI, Y L HO, T KANKI et al. Mid-infrared plasmonic resonances in 2D VO2 nanosquare arrays. Advanced Optical Materials, 3, 1759-1767(2015).

    [158] O L MUSKENS, L BERGAMINI, Y WANG et al. Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide. Light: Science & Applications, 5, e16173(2016).

    [159] S J KIM, H YUN, K PARK et al. Active directional switching of surface plasmon polaritons using a phase transition material. Scientific Reports, 7, 43723(2017).

    [160] Y KE, X WEN, D ZHAO et al. Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance. ACS Nano, 11, 7542-7551(2017).

    [161] Q HAO, W LI, H XU et al. VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications. Advanced Materials, 30, 1705421(2018).

    [162] Y NAGASAKI, T KOHNO, K BANDO et al. Adaptive printing using VO2 optical antennas with subwavelength resolution. Applied Physics Letters, 115, 161105(2019).

    [163] X XIONG, Z H XUE, C MENG et al. Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial. Physical Review B, 88, 115105(2013).

    [164] X XIONG, S C JIANG, Y H HU et al. Structured metal film as a perfect absorber. Advanced Materials, 25, 3994-4000(2013).

    [165] X XIONG, Y S HU, S C JIANG et al. Metallic stereostructured layer: An approach for broadband polarization state manipulation. Applied Physics Letters, 105, 201105(2014).

    [166] M J DICKEN, K AYDIN, I M PRYCE et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Optics Express, 17, 18330-18339(2009).

    [167] W X HUANG, X G YIN, C P HUANG et al. Optical switching of a metamaterial by temperature controlling. Applied Physics Letters, 96, 261908(2010).

    [168] K APPAVOO, R F HAGLUND. Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial. Nano Letters, 11, 1025-1031(2011).

    [169] H N S KRISHNAMOORTHY, Y ZHOU, S RAMANATHAN et al. Tunable hyperbolic metamaterials utilizing phase change heterostructures. Applied Physics Letters, 104, 121101(2014).

    [170] M R M HASHEMI, S H YANG, T WANG et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Scientific Reports, 6, 35439(2016).

    [171] Z ZHU, P G EVANS, R F HAGLUND et al. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Letters, 17, 4881-4885(2017).

    [172] K SUN, C A RIEDEL, A URBANI et al. VO2 thermochromic metamaterial-based smart optical solar reflector. ACS Photonics, 5, 2280-2286(2018).

    [173] Z SONG, K WANG, J LI et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials. Optics Express, 26, 7148-7154(2018).

    [174] D J PARK, J H SHIN, K H PARK et al. Electrically controllable THz asymmetric split-loop resonator with an outer square loop based on VO2. Optics Express, 26, 17397-17406(2018).

    [175] Y ZHAO, Y ZHANG, Q SHI et al. Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures. ACS Photonics, 5, 3040-3050(2018).

    [176] M LIU, E PLUM, H LI et al. Temperature-controlled optical activity and negative refractive index. Advanced Functional Materials, 31, 2010249(2021).

    [177] C WAN, Z ZHANG, J SALMAN et al. Ultrathin broadband reflective optical limiter. Laser Photonics Reviews, 15, 2100001(2021).

    [178] S C JIANG, X XIONG, P SARRIUGARTE et al. Tuning the polarization state of light via time retardation with a microstructured surface. Physical Review B, 88, 161104(2013).

    [179] Y J GAO, Z Y WANG, W J TANG et al. Metasurface design for the generation of an arbitrary assembly of different polarization state. Physical Review B, 104, 125419(2021).

    [180] H C CHU, H Y ZHANG, Y ZHANG et al. Invisible surfaces enabled by the coalescence of anti-reflection and wavefront controllability in ultrathin metasurfaces. Nature Communications, 12, 4523(2021).

    [181] H C CHU, X XIONG, Y J GAO et al. Diffuse reflection and reciprocity-protected transmission via a random-flip metasurface. Science Advances, 7, eabj0935(2021).

    [182] F DING, S ZHONG, S I BOZHEVOLNYI et al. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies. Advanced Optical Materials, 6, 1701204(2018).

    [183] H CAI, S CHEN, C ZOU et al. Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves. Advanced Optical Materials, 6, 1800257(2018).

    [184] M T NOUMAN, J H HWANG, M FAIYAZ et al. Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control. Optics Express, 26, 12922-12929(2018).

    [185] N A BUTAKOV, I VALMIANSKI, T LEWI et al. Switchable plasmonic-dielectric resonators with metal-insulator transitions. ACS Photonics, 5, 371-377(2018).

    [186] K DONG, S HONG, Y DENG et al. A lithography-free and field-programmable photonic metacanvas. Advanced Materials, 30, 1703878(2018).

    [187] Y KIM, P C WU, R SOKHOYAN et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Letters, 19, 3961-3968(2019).

    [188] R KARGAR, K ROUHI, A ABDOLALI. Reprogrammable multifocal THz metalens based on metal–insulator transition of VO2-assisted digital metasurface. Optics Communications, 462, 125331(2020).

    [189] M LIU, E PLUM, H LI et al. Switchable chiral mirrors. Advanced Optical Materials, 8, 2000247(2020).

    [190] A HOWES, Z ZHU, D CURIE et al. Optical limiting based on Huygens’ metasurfaces. Nano Letters, 20, 4638-4644(2020).

    [191] Y HU, M TONG, Z XU et al. Spatiotemporal terahertz metasurfaces for ultrafast all-optical switching with electric-triggered bistability. Laser Photonics Reviews, 15, 2000456(2021).

    [192] P KEPIČ, F LIGMAJER, M HRTOŇ et al. Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible. ACS Photonics, 8, 1048-1057(2021).

    [193] A TRIPATHI, J JOHN, S KRUK et al. Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials. ACS Photonics, 8, 1206-1213(2021).

    [194] H WEI, Z WANG, X TIAN et al. Cascaded logic gates in nanophotonic plasmon networks. Nature Communications, 2, 387(2011).

    [195] Q HU, J Z ZHAO, R W PENG et al. “Rainbow” trapped in a self-similar coaxial optical waveguide. Applied Physics Letters, 96, 161101(2010).

    [196] Q HU, D H XU, Y ZHOU et al. Position-sensitive spectral splitting with a plasmonic nanowire on silicon chip. Scientific Reports, 3, 3095(2013).

    [197] Q HU, D H XU, R W PENG et al. Tune the “rainbow” trapped in a multilayered waveguide. Europhysics Letters, 99, 57007(2012).

    [198] J CAI, B CHEN, J WU et al. Reconfigurable terahertz rainbow deflector. Applied Physics Letters, 118, 141105(2021).

    Renhao FAN, Benqi HOU, Ruwen PENG, Mu WANG. Dynamically Tunable Optical Materials and Devices Based on Phase Transition of Vanadium Dioxide(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551304
    Download Citation