[1] Simon P and Gogotsi Y 2008 Materials for electrochemical capacitors Nat. Mater. 7 845–54
[2] Wu F, LiuMQ,LiY, FengX,ZhangK,BaiY, WangXRand Wu C 2021 High-mass-loading electrodes for advanced secondary batteries and supercapacitors Electrochem. Energy Rev. 4 382–446
[3] DuanJ,TangX,DaiHF, YangY, Wu WY, WeiXZand Huang Y H 2020 Building safe lithium-ion batteries for electric vehicles: a review Electrochem. Energy Rev. 3 1–42
[4] Wu D, Peng C, Yin C and Tang H 2020 Review of system integration and control of proton exchange membrane fuel cells Electrochem. Energy Rev. 3 466–505
[5] Seh Z W, Kibs′gaard J, Dickens C F, Chorkendorff I, N.rskov J K and Jaramillo T F 2017 Combining theory and experiment in electrocatalysis: insights into materials design Science 355 eaad4998
[6] WeiWT, XuJQ,ChenWH,MiLWandZhangJJ2022A review of sodium chloride-based electrolytes and materials for electrochemical energy technology J. Mater. Chem. A 10 2637–71
[7] Wu H M, Feng C Q, Zhang L, Zhang J J and Wilkinson D P 2021 Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis Electrochem. Energy Rev. 4 473–507
[8] Zheng Y, Chen Z W and Zhang J J 2021 Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuels Electrochem. Energy Rev. 4 508–17
[9] Pan JQ,WangPH,WangPP, Yu Q,WangJJ,SongCS, Zheng Y Y and Li C R 2021 The photocatalytic overall water splitting hydrogen production of g-C3N4/CdS hollow core-shell heterojunction via the HER/OER matching of Pt/MnOx Chem. Eng. J. 405 126622
[10] Madhusudan P, Shi R, Xiang S L, Jin M T, Chandrashekar B N, Wang J W, Wang W J, Peng O W, Amini A and Cheng C 2021 Construction of highly efficient Z-scheme ZnxCd1.xS/Au@g-C3N4 ternary heterojunction composite for visible-light-driven photocatalytic reduction of CO2 to solar fuel Appl. Catal. B 282 119600
[11] Ye J et al 2021 Novel N-Black In2O3.x/InVO4 heterojunction for efficient photocatalytic fixation: synergistic effect of exposed (321) facet and oxygen vacancy J. Mater. Chem. A 9 24600–12
[12] Song X et al 2021 Synergistic interplay between asymmetric backbone conformation, molecular aggregation, and charge-carrier dynamics in fused-ring electron acceptor-based bulk heterojunction solar cells ACS Appl. Mater. Interfaces 13 2961–70
[13] WeiWT, Wu JR,CuiSZ,ZhaoYM,ChenWHandMiLW 2019 α-Ni(OH)2/NiS1.97 heterojunction composites with excellent ion and electron transport properties for advanced supercapacitors Nanoscale 11 6243–53
[14] YangHF, GuoHR,LiXP, RenWLandSongR2021 Regulation effects of Co2+ on the construction of a Cu-Ni(OH)2@CoO nanoflower cluster heterojunction: a critical factor in obtaining a high-performance battery-type hybrid supercapacitor Nanoscale 13 18182–91
[15] Yu S, Xiong X B, Ma J and Qian H X 2021 One-step preparation of cobalt nickel oxide hydroxide@cobalt sulfide heterostructure film on Ni foam through hydrothermal electrodeposition for supercapacitors Surf. Coat. Technol. 426 127791
[16] Song K, Li W T, Yang R, Zheng Y J, Chen X S, Wang X, Chen G L and Lv W C 2021 Controlled preparation of Ni(OH)2/NiS nanosheet heterostructure as hybrid supercapacitor electrodes for high electrochemical performance Electrochim. Acta 388 138663
[17] ZhangYF, ZhuYK,LvCX,LaiSJ,XuWJ,SunJ,SunYY and Yang D J 2020 Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction Rare Met. 39 841–9
[18] KimY, Kwon S,SeoEJ,NamJH,JangHY, Kwon SH, Kwon J D, Kim D W and Cho B 2018 Facile fabrication of a two-dimensional TMD/Si heterojunction photodiode by atmospheric-pressure plasma-enhanced chemical vapor deposition ACS Appl. Mater. Interfaces 10 36136–43
[19] Jiamprasertboon A, Kafizas A, Sachs M, Ling M, Alotaibi A M, Lu Y, Siritanon T, Parkin I P and Carmalt C J 2019 Heterojunction α-Fe2O3/ZnO films with enhanced photocatalytic properties grown by aerosol-assisted chemical vapour deposition Chem. Eur. J. 25 11337–45
[20] Patil R P, Mahadik M A, Bae H S, Chae W S, Choi S H and Jang J S 2020 Porous Zn1.xCdxS nanosheets/ZnO nanorod heterojunction photoanode via self-templated and cadmium ions exchanged conversion of ZnS(HDA)0.5 nanosheets/ ZnO nanorod Chem. Eng. J. 402 126153
[21] Qin Y et al 2021 Single-atom-based heterojunction coupling with ion-exchange reaction for sensitive photoelectrochemical immunoassay Nano Lett. 21 1879–87
[22] LiYT, LiuZF, LiJW, RuanMNandGuoZG2020An effective strategy of constructing a multi-junction structure by integrating a heterojunction and a homojunction to promote the charge separation and transfer efficiency of WO3 J. Mater. Chem. A 8 6256–67
[23] LuMF, LiQQ,ZhangCL,Fan XX,LiL,DongYM, Chen G Q and Shi H F 2020 Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer Carbon 160 342–52
[24] QiuBC,ZhuQH,DuMM,Fan LG,XingMYand Zhang J L 2017 Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting Angew. Chem., Int. Ed. 56 2684–8
[25] Wang M, Tan G Q, Dang M Y, Wang Y, Zhang B X, Ren H J, Lv L and Xia A 2021 Dual defects and build-in electric field mediated direct Z-scheme W18O49/g-C3N4.x heterojunction for photocatalytic NO removal and organic pollutant degradation J. Colloid Interface Sci. 582 212–26
[26] LiXB et al 2021 Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies Nano Energy 81 105671
[27] Tan MX et al 2022 Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-scheme ZnIn2S4/g-C3N4 heterojunction Adv. Funct. Mater. 32 2111740
[28] Midya A, Ghorai A, Mukherjee S, Maiti R and Ray S K 2016 Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications J. Mater. Chem. A 4 4534–43
[29] LuXY, CheWJ,HuXF, WangY, ZhangAT, DengF, Luo S L and Dionysiou D D 2019 The facile fabrication of novel visible-light-driven Z-scheme CuInS2/Bi2WO6 heterojunction with intimate interface contact by in situ hydrothermal growth strategy for extraordinary photocatalytic performance Chem. Eng. J. 356 819–29
[30] FeiFC et al 2015 Solvothermal synthesis of lateral heterojunction Sb2Te3/Bi2Te3 nanoplates Nano Lett. 15 5905–11
[31] PangH,LiXR,ZhaoQX,XueHG,LaiWY, HuZand Huang W 2017 One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors Nano Energy 35 138–45
[32] Lin Y et al 2019 Construction of CoP/NiCoP nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor Adv. Energy Mater. 9 1901213
[33] LiL,ZhouYM,ZhouH,QuHN,ZhangCL,GuoMX, Liu X Q, Zhang Q Y and Gao B 2019 N/P codoped porous carbon/one-dimensional hollow tubular carbon heterojunction from biomass inherent structure for supercapacitors ACS Sustain. Chem. Eng. 7 1337–46
[34] Luo W H, Zhang G F, Cui Y X, Sun Y, Qin Q, Zhang J and Zheng W J 2017 One-step extended strategy for the ionic liquid-assisted synthesis of Ni3S4-MoS2 heterojunction electrodes for supercapacitors J. Mater. Chem. A 5 11278–85
[35] ChenP, CaoCB,DingCS,YinZZ,QiSH,GuoJ,ZhangM and Sun Z Q 2022 One-body style photo-supercapacitors based on Ni(OH)2/TiO2 heterojunction array: high specific capacitance and ultra-fast charge/discharge response J. Power Sources 521 230920
[36] Zhang T D, Li W L, Zhao Y, Yu Y and Fei W D 2018 High energy storage performance of opposite double-heterojunction ferroelectricity-insulators Adv. Funct. Mater. 28 1706211
[37] Ou X, Xiao Z M, Zhang J F, Wang C H, Wang D, Zhang B and Wu Y P 2020 Enhancing the rapid Na+-storage performance via electron/ion bridges through GeS2/graphene heterojunction ACS Nano 14 13952–63
[38] Zhu S et al 2022 In situ architecting endogenous heterojunction of MoS2 coupling with Mo2CTx MXenes for optimized Li+ storage Adv. Mater. 34 2270036
[39] Yang J, Xing S Q, Zhou J B, Cheng Y, Shi L and Yang Q 2019 The controlled construction of a ternary hybrid of monodisperse Ni3S4 nanorods/graphitic C3N4 nanosheets/nitrogen-doped graphene in van der Waals heterojunctions as a highly efficient electrocatalyst for overall water splitting and a promising anode material for sodium-ion batteries J. Mater. Chem. A 7 3714–28
[40] Wan K, Luo J S, Zhou C, Zhang T, Arbiol J, Lu X H, Mao B W, Zhang X and Fransaer J 2019 Hierarchical porous Ni3S4 with enriched high-valence Ni sites as a robust electrocatalyst for efficient oxygen evolution reaction Adv. Funct. Mater. 29 1900315
[41] LiTF, LuTY, LiY, YinJW, TangYW, ZhangMY, PangH, Xu L, Yang J and Zhang Y W 2022 Interfacial engineering-induced electronic regulation drastically enhances the electrocatalytic oxygen evolution: immobilization of Janus-structured NiS/NiO nanoparticles onto carbon nanotubes/nanofiber-integrated superstructures Chem. Eng. J. 428 131094
[42] Jiang D G, Liang H, Yang W R, Liu Y, Cao X Y, Zhang J M, Li C W, Liu J Q and Gooding J J 2019 Screen-printable films of graphene/CoS2/Ni3S4 composites for the fabrication of flexible and arbitrary-shaped all-solid-state hybrid supercapacitors Carbon 146 557–67
[43] Wei W T, Ye W Y, Wang J, Huang C, Xiong J B, Qiao H J, Cui SZ, Chen WH, MiL WandYan P F 2019 Hydrangea-like α-Ni1/3Co2/3(OH)2 reinforced by ethyl carbamate “Rivet” for all-solid-state supercapacitors with outstanding comprehensive performance ACS Appl. Mater. Interfaces 11 32269–81
[44] ZhangJX,DengY, Wu YQ,XiaoZY, LiuXB,LiZJ, Bu R R, Zhang Q, Sun W and Wang L 2022 Chemically coupled 0D-3D hetero-structure of Co9S8-Ni3S4 hollow spheres for Zn-based supercapacitors Chem. Eng. J. 430 132836
[45] YangF, WangSG,GuanJD,ShaoLY, ShiXY, CaiJJ and Sun Z P 2021 Hierarchical MoS2-NiS nanosheet-based nanotubes@N-doped carbon coupled with ether-based electrolytes towards high-performance Na-ion batteries J. Mater. Chem. A 9 27072–83
[46] Huang C, Gao A M, Yi F Y, Wang Y C, Shu D, Liang Y S, Zhu Z H, Ling J Z and Hao J N 2021 Metal organic framework derived hollow NiS@C with S-vacancies to boost high-performance supercapacitors Chem. Eng. J. 419 129643
[47] Hegazy M B Z, Berber M R, Yamauchi Y, Pakdel A, Cao R and Apfel U P 2021 Synergistic electrocatalytic hydrogen evolution in Ni/NiS nanoparticles wrapped in multi-heteroatom-doped reduced graphene oxide nanosheets ACS Appl. Mater. Interfaces 13 34043–52
[48] Tong H G, Wang C L, Lu J, Chen S, Yang K, Huang M X, Yuan Q and Chen Q W 2020 Energetic metal-organic frameworks derived highly nitrogen-doped porous carbon for superior potassium storage Small 16 2002771
[49] Lu Q, Wu H, Zheng X R, Chen Y N, Rogach A L, Han X P, Deng Y D and Hu W B 2021 Encapsulating cobalt nanoparticles in interconnected N-doped hollow carbon nanofibers with enriched Co-N-C moiety for enhanced oxygen electrocatalysis in Zn-air batteries Adv. Sci. 8 2101438
[50] WeiWT, ChenWH,MiLW, XuJQandZhangJJ2021 High-rate performance aqueous-based supercapacitors at .30 .C driven by novel 1D Ni(OH)2 nanorods and a two-solute electrolyte J. Mater. Chem. A 9 23860–72
[51] Kavinkumar T, Seenivasan S, Lee H H, Jung H, Han J W and Kim D H 2021 Interface-modulated uniform outer nanolayer: a category of electrodes of nanolayer-encapsulated core-shell configuration for supercapacitors Nano Energy 81 105667
[52] Liu X J, Liu J F and Sun X M 2015 NiCo2O4@NiO hybrid arrays with improved electrochemical performance for pseudocapacitors J. Mater. Chem. A 3 13900–5
[53] YangPY, Wu ZY, JiangYC,Pan ZC,TianWC,JiangL and Hu L F 2018 Fractal (NixCo1.x)9Se8 nanodendrite arrays with highly exposed (01ˉ.) surface for wearable, all-solid-state supercapacitor Adv. Energy Mater. 8 1801392
[54] Wang H Y, Liang M M, Duan D, Shi W Y, Song Y Y and Sun Z B 2018 Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance Chem. Eng. J. 350 523–33
[55] GuJL,SunL,ZhangYX,ZhangQY, LiXW, SiHC,ShiY, Sun C, Gong Y and Zhang Y H 2020 MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors Chem. Eng. J. 385 123454
[56] ZhangYX,SunL,ZhangLK,LiXW, GuJL,SiHC,Wu L, Shi Y, Sun C and Zhang Y H 2020 Highly porous oxygen-doped NiCoP immobilized in reduced graphene oxide for supercapacitive energy storage Composites B 182 107611
[57] LiuSX,Sarwar S,WangJY, ZhangHP, LiTB,Luo JJand Zhang X Y 2021 The microwave synthesis of porous CoSe2 nanosheets for super cycling performance supercapacitors J. Mater. Chem. C 9 228–37
[58] WangH,ShuT, Yuan JZ,LiYX,LinB,WeiFX, QiJQand Sui Y 2022 Highly stable lamellar array composed of CoSe2 nanoparticles for supercapacitors Colloids Surf. A 633 127789
[59] LiuXH,SunJL,LiuYF, LiuDS,XuCJandChenHY 2022 The CuCo2O4/CuO composite-based microspheres serve as a battery-type cathode material for highly capable hybrid supercapacitors J. Alloys Compd. 894 162566
[60] Liu S D, Kang L, Hu J S, Jung E, Zhang J, Jun S C and Yamauchi Y 2021 Unlocking the potential of oxygen-deficient copper-doped Co3O4 nanocrystals confined in carbon as an advanced electrode for flexible solid-state supercapacitors ACS Energy Lett. 6 3011–9
[61] Wang H Q, Zhang W J, Zhang X W, Hu S X, Zhang Z C, Zhou W J and Liu H 2021 Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte Nano Res. 14 4857–64