• Matter and Radiation at Extremes
  • Vol. 3, Issue 1, 40 (2018)
S.K. Kodanova1、2, M.K. Issanova1, S.M. Amirov1、2, T.S. Ramazanov1, A. Tikhonov3, and Zh.A. Moldabekov1、2、*
Author Affiliations
  • 1Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Str., 050040 Almaty, Kazakhstan
  • 2Institute of Applied Sciences and IT, 40-48 Shashkin Str., 050038 Almaty, Kazakhstan
  • 3Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
  • show less
    DOI: doi.org/10.1016/j.mre.2017.07.005 Cite this Article
    S.K. Kodanova, M.K. Issanova, S.M. Amirov, T.S. Ramazanov, A. Tikhonov, Zh.A. Moldabekov. Relaxation of non-isothermal hot dense plasma parameters[J]. Matter and Radiation at Extremes, 2018, 3(1): 40 Copy Citation Text show less
    References

    [1] D.H.H. Hoffmann, A. Blazevic, O. Rosmej, M. Roth, N.A. Tahir, et al., Present and future perspectives for high energy density physics with intense heavy ion and laser beams, Laser Part. Beams 23 (2005) 47-53.

    [2] B. Yu. Sharkov, D.H.H. Hoffmann, A.A. Golubev, Y. Zhao, High energy density physics with intense ion beams, Matter Radiat. Extrem. 1 (2016) 28e47.

    [3] S. Kawata, T. Karino, A.I. Ogoyski, Review of heavy-ion inertial fusion physics, Matter Radiat. Extrem. 1 (2016) 89-113.

    [4] O.A. Hurricane, D.A. Callahan, D.T. Casey, P.M. Celliers, C. Cerjan, et al., Fuel gain exceeding unity in an inertially confined fusion implosion, Nature 506 (2014) 343.

    [5] M.R. Gomez, S.A. Slutz, A.B. Sefkow, D.B. Sinars, K.D. Hahn, et al., Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion, Phys. Rev. Lett. 113 (2014) 155003. P.F. Schmit, et al, Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in Magneto-Inertial Fusion, Phys. Rev. Lett. 113 (2014) 155004.

    [6] M.K. Issanova, S.K. Kodanova, T.S. Ramazanov, D.H.H. Hoffmann, Transport properties of inertial confinement fusion dense plasmas, Contrib. Plasma Phys. 56 (5) (2016) 425.

    [7] T.S. Ramazanov, Zh.A. Moldabekov, M.T. Gabdullin, Effective potentials of interactions and thermodynamic properties of a nonideal twotemperature dense plasma, Phys. Rev. E 92 (2015) 023104.

    [8] T. Ramazanov, Zh. Moldabekov, M. Gabdullin, Multipole expansion in plasmas: effective interaction potentials between compound particles, Phys. Rev. E 93 (2016) 053204.

    [9] T.S. Ramazanov, Zh.A. Moldabekov, M.T. Gabdullin, T.N. Ismagambetova, Interaction potentials and thermodynamic properties of two component semiclassical plasma, Phys. Plasmas 21 (2014) 012706.

    [10] C.A. Ordonez, M.I. Molina, Evaluation of the Coulomb logarithm using cutoff and screened Coulomb potentials, Phys. Plasmas 1 (1994) 2515.

    [11] T.S. Ramazanov, S.K. Kodanova, Coulomb logarithm of a nonideal plasma, Phys. Plasmas 8 (2001) 5049.

    [12] S.K. Kodanova, T.S. Ramazanov, M.K. Issanova, G.N. Nigmetova, Zh.A. Moldabekov, Investigation of Coulomb logarithm and relaxation processes in dense plasma on the basis of effective potentials, Contrib. Plasma Phys. 55 (2015) 271.

    [13] M.K. Issanova, S.K. Kodanova, T.S. Ramazanov, N.Kh. Bastykova, Zh.A. Moldabekov, et al., Classical scattering and stopping power in dense plasmas: the effect of diffraction and dynamic screening, Laser Part. Beams 34 (2016) 457-466.

    [14] T.S. Ramazanov, S.K. Kodanova, Zh.A. Moldabekov, M.K. Issanova, Dynamical properties of non-ideal plasma on the basis of effective potentials, Phys. Plasmas 20 (2013) 112702.

    [15] Zh.A. Moldabekov, P. Ludwig, J.P. Joost, M. Bonitz, T.S. Ramazanov, Dynamical screening and wake effects in classical, quantum, and ultrarelativistic plasmas, Contrib. Plasma Phys. 55 (2015) 186.

    [16] Zh.A. Moldabekov, P. Ludwig, M. Bonitz, T.S. Ramazanov, Notes on anomalous quantum wake effects, Contrib. Plasma Phys. 56 (2016) 442.

    [17] T.S. Ramazanov, K.N. Dzhumagulova, A.Zh. Akbarov, Cross sections and transport coefficients of dense partially ionized semiclassical plasma, J. Phys. A Math. Gen. 39 (2006) 4335.

    [18] M.-Y. Song, Y.-D. Jung, Quantum screening effects on the electron-ion occurrence scattering time advance in strongly coupled semiclassical plasmas, Phys. Plasmas 10 (2003) 3051.

    [19] H.-M. Kim, Y.-D. Jung, Quantum effects on polarization transport scatterings in partially ionized dense hydrogen plasmas, Phys. Plasmas 14 (2007) 074501.

    [20] D.-H. Ki, Y.-D. Jung, Quantum screening effects on the ion-ion collisions in strongly coupled semiclassical plasmas, Phys. Plasmas 17 (2010) 074506.

    [21] F.B. Baimbetov, Kh.T. Nurekenov, T.S. Ramazanov, Pseudopotential theory of classical non-ideal plasmas, Phys. Lett. A 202 (1995) 211.

    [22] F.B. Baimbetov, Kh.T. Nurekenov, T.S. Ramazanov, Electrical conductivity and scattering sections of strongly coupled hydrogen plasmas, Phys. A 226 (1996) 181.

    [23] L.G. Stanton, M.S. Murillo, Unified description of linear screening in dense plasmas, Phys. Rev. E 91 (2015) 033104. Pulisher's Note ibid: 91 (2015) 049901.

    [24] M. Akbari-Moghanjoughi, Hydrodynamic limit of Wigner-Poisson kinetic theory: revisited, Phys. Plasmas 22 (2015) 022103. Erratum ibid: 22 (2015) 039904.

    [25] Zh. Moldabekov, T. Schoof, P. Ludwig, M. Bonitz, T. Ramazanov, Statically screened ion potential and Bohm potential in a quantum plasma, Phys. Plasmas 22 (2015) 102104.

    [26] S.D. Baalrud, J. Daligault, Effective potential theory for transport coefficients across coupling regimes, Phys. Rev. Lett. 110 (2013) 235001.

    [27] J. Daligault, Practical model for the self-diffusion coefficient in Yukawa one-component plasmas, Phys. Rev. E 86 (2012) 047401.

    [28] S.D. Baalrud, Transport coefficients in strongly coupled plasmas, Phys. Plasmas 19 (2012) 030701.

    [29] F.B. Baimbetov, M.A. Bekenov, T.S. Ramazanov, Effective potential of a semiclassical hydrogen plasma, Phys. Lett. A 197 (1995) 157.

    [30] P.K. Shukla, B. Eliasson, Novel attractive force between ions in quantum plasmas, Phys. Rev. Lett. 108 (2012) 165007.

    [31] T.S. Ramazanov, K.N. Dzhumagulova, M.T. Gabdullin, Effective potentials for ion-ion and charge-atom interactions of dense semiclassical plasma, Phys. Plasmas 17 (2002) 042703.

    [32] Zh.A. Moldabekov, P. Ludwig, M. Bonitz, T.S. Ramazanov, Ion potential in warm dense matter: wake effects due to streaming degenerate electrons, Phys. Rev. E 91 (2015) 023102.

    [33] M.H. Thoma, What can we learn from electromagnetic plasmas about the quarkgluon plasma J. Phys. A Math. Theor. 42 (2009) 214004.

    [34] S. Mrowczynski, M.H. Thoma, What do electromagnetic plasmas tell us about the Quark-Gluon plasma Annu. Rev. Nucl. Part. Sci. 57 (2007) 61.

    [35] S.V. Vladimirov, Yu.O. Tyshetzskiy, On description of a collisionless quantum plasma, Phys. Uspekhi 54 (12) (2011) 1243-1256.

    [36] P.M. Echenique, F. Flores, R.H. Ritchie, Dynamic screening of ions in condensed matter, Solid State Phys. 43 (1990) 229.

    [37] P. Ludwig, W.J. Miloch, H. K€ahlert, M. Bonitz, On the wake structure in streaming complex plasmas, New J. Phys. 14 (2012) 053016.

    [38] Nestro R. Arista,Werner Brandt, Dielectric response of quantum plasmas in thermal equilibrium, Phys. Rev. A 29 (1984) 1471.

    [39] C. Deutsch, Nodal expansion in a real matter plasma, Phys. Lett. A 60 (1977) 317. C. Deutsch, Y. Furutani, and M.M. Gombert, Nodal expansions for strongly coupled classical plasmas, Phys. Rep. 69 (1981) 85.

    [40] P. Seuferling, J. Vogel, C. Toepffer, Correlations in a two-temperature plasma, Phys. Rev. A 40 (1989) 323.

    [41] R. Bredow, Th. Bornath, W.-D. Kraeft, Hypernetted chain calculations for multi-component and nonequilibrium,Contrib. Plasma Phys. 53 (2013) 276.

    [42] W. Ebeling, The work of Baimbetov on nonideal plasmas and some recent developments, Contrib. Plasma Phys. 56 (2016) 163.

    [43] G. Belyaev, M. Basko, A. Cherkasov, A. Golubev, A. Fertman, et al., Measurement of the Coulomb energy loss by fast protons in a plasma target, Phys. Rev. E 53 (1996) 2701-2707.

    [44] C. Deutsch, Gc Maynard, Ion stopping in dense plasmas: a basic physics approach, Matter Radiat. Extrem. 1 (2016) 277-307.

    [45] P.E. Grabowski, M.P. Surh, D.F. Richards, F.R. Graziani, M.S. Murillo, Molecular dynamics simulations of classical stopping power, Phys. Rev. Lett. 111 (2013) 215002.

    [46] W.D. Kraeft, B. Strege, Energy loss of charged particles moving in a plasma, Phys. A 149 (1988) 313-322.

    [47] S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, International Series of Monographs on Physics, the Physics of Inertial Fusion, Oxford University Press, Oxford, 2004, 2009.

    [48] C.Wang,Y. Long, X.-T. He, J.-F.Wu,W.-H.Ye, et al., Transport properties of dense deuterium-tritium plasmas, Phys. Rev. E 88 (2013) 013106.

    [49] S.X. Hu, L.A. Collins, T.R. Boehly, J.D. Kress, V.N. Goncharov, et al., First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications, Phys. Rev. E 89 (2014) 043105.

    [50] J.D. Kress, J.S. Cohen, D.A. Horner, F. Lambert, L.A. Collins, Viscosity and mutual diffusion of deuterium-tritium mixtures in the warm-densematter regime, Phys. Rev. E 82 (2010) 036404.

    [51] J. Daligault, Liquid-state properties of a one-component plasma, Phys. Rev. Lett. 96 (2006) 065003, 103 (2009) 029901E.

    [52] S. Bastea, Viscosity and mutual diffusion in strongly asymmetric binary ionic mixtures, Phys. Rev. E 71 (2005) 056405.

    [53] J. Wallenborn, M. Baus, Kinetic theory of the shear viscosity of a strongly coupled classical one-component plasma, Phys. Rev. A 18 (1978) 1737.

    [54] L.S. Brown, D.L. Preston, R.L. Singleton Jr., Charged particle motion in a highly ionized plasma, Phys. Rep. 410 (2005) 237.

    [55] L. Spitzer, Physics of Fully Ionized Gases, Interscience, N.Y, 1967, p. 586.

    [56] D.O. Gericke, M.S. Murillo, M. Schlanges, Dense plasma temperature equilibration in the binary collision approximation, Phys. Rev. E 65 (2002) 036418.

    [57] J.N. Glosli, F. Graziani, R.M. More, M.S. Murillo, F.H. Streitz, et al., Molecular dynamics simulations of temperature equilibration in dense hydrogen, Phys. Rev. E 78 (2008) 025401.

    [58] Zh.A. Moldabekov, T.S. Ramazanov, M.T. Gabdullin, Equation of state of a dense plasma: analytical results on the basis of quantum pair interaction potentials in the random phase approximation, J. Phys. Conf. Ser. 774 (2016), 012144.

    [59] T.S. Ramazanov, Zh.A. Moldabekov, M.T. Gabdullin, Interaction between ions in hot dense plasma via screened Cornell potential, Phys. Plasmas 23 (2016), 042703.

    [60] T.S. Ramazanov, S.K. Kodanova, M.K. Issanova, N.K. Bastykova, Zh.A. Moldabekov, The modern information technologies and visualization methods for analysis of computer simulation results for complex plasma, Commun. Comput. Phys. 15 (2014) 981-995.

    S.K. Kodanova, M.K. Issanova, S.M. Amirov, T.S. Ramazanov, A. Tikhonov, Zh.A. Moldabekov. Relaxation of non-isothermal hot dense plasma parameters[J]. Matter and Radiation at Extremes, 2018, 3(1): 40
    Download Citation