[1] Lynch M.. Pain as the fifth vital sign. Journal of Intravenous Nursing, 24, 85-94(2001).
[2] D. LopezMartinez, K. Peng, S.C. Steele, A.J. Lee, D. Bsook, R. Picard, Multitask multiple kernel machines f personalized pain recognition from functional nearinfrared spectroscopy brain signals, in: Proc. of the 24th Intl. Conf. on Pattern Recognition (ICPR), Beijing, China, 2018, pp. 2320–2325.
[5] Kunz M., Scharmann S., Hemmeter U., Schepelmann K., Lautenbacher S.. The facial expression of pain in patients with dementia. PAIN®, 133, 221-228(2007).
[8] H. Liu, T.T. Liu, Y. Chen, Z.L. Zhang, Y.F. Li, EHPE: Skeleton cuesbased Gaussian codinate encoding f efficient human pose estimation, IEEE T. Multimedia (Aug. 2022) 112. DOI: 10.1109TMM.2022.3197364.
[10] Bargshady G., Zhou X.-J., Deo R.C., Soar J., Whittaker F., Wang H.. Ensemble neural network approach detecting pain intensity from facial expressions. Artif. Intell. Med., 109, 101954:1-12(2020).
[11] N. Ahmed, T. Natarajan, K.R. Rao, Discrete cosine transfm, IEEE T. Comput. C23 (1) (Jan. 1974) 90–93.
[12] T. Ahonen, A. Hadid, M. Pietikäinen, Face recognition with local binary patterns, in: Proc. of the 8th European Conf. on Computer Vision, Prague, Czech Republic, 2004, pp. 469–481.
[13] N. Dalal, B. Triggs, Histograms of iented gradients f human detection, in: Proc. of the IEEE Computer Society Conf. on Computer Vision Pattern Recognition, San Diego, USA, 2005, pp. 886–893.
[14] LeCun Y., Bengio Y., Hinton G.. Deep learning. Nature, 521, 436-444(2015).
[16] Xin X.-W., Lin X.-Y., Yang S.-F., Zheng X.. Pain intensity estimation based on a spatial transformation and attention CNN. PLoS One, 15, e0232412:1-15(2020).
[17] A. Graves, Long shtterm memy, in: A. Graves (Ed.), Supervised Sequence Labelling with Recurrent Neural wks, Springer, Berlin, Heidelberg, Germany, 2012, pp. 37–45.
[18] Z. Hammal, J.F. Cohn, Automatic detection of pain intensity, in: Proc. of the 14th ACM Intl. Conf. on Multimodal Interaction, Santa Monica, USA, 2012, pp. 47–52.
[19] J. Zhou, X.P. Hong, F. Su, G.Y. Zhao, Recurrent convolutional neural wk regression f continuous pain intensity estimation in video, in: Proc. of the IEEE Conf. on Computer Vision Pattern Recognition Wkshops, Las Vegas, USA, 2016, pp. 1535–1543.
[20] E. Friesen, P. Ekman, Facial action coding system: A technique f the measurement of facial movement, Palo Alto 3(2) (1978) 5.
[21] Prkachin K.M., Solomon P.E.. The structure. reliability and validity of pain expression: Evidence from patients with shoulder pain, Pain, 139, 267-274(2008).
[22] P. Lucey, J.F. Cohn, K.M. Prkachin, P.E. Solomon, I. Matthews, Painful data: The UNBCMcMaster shoulder pain expression archive database, in: Proc. of the IEEE Intl. Conf. on Automatic Face & Gesture Recognition (FG), Santa Barbara, USA, 2011, pp. 57–64.
[23] R.J. Yang, X.P. Hong, J.Y. Peng, X.Y. Feng, G.Y. Zhao, Incpating highlevel lowlevel cues f pain intensity estimation, in: Proc. of the 24th Intl. Conf. on Pattern Recognition (ICPR), Beijing, China, 2018, pp. 3495–3500.
[24] A.B. Ashraf, S. Lucey, J.F. Cohn, et al., The painful face: Pain expression recognition using active appearance models, in: Proc. of the 9th Intl. Conf. on Multimodal Interfaces, Nagoya, Japan, 2007, pp. 9–14.
[25] S. Kaltwang, O. Rudovic, M. Pantic, Continuous pain intensity estimation from facial expressions, in: Proc. of the 8th Intl. Symposium on Visual Computing, Rethymnon, Crete, Greece, 2012, pp. 368–377.
[27] Zakaria N., M. M. Hassim Y.. A review study of the visual geometry group approaches for image classification. J. of Appl. Sci., Tech. and Comput., 1, 14-28(2024).
[32] H. Liu, C. Zhang, Y.J. Deng, B.C. Xie, T.T. Liu, Y.F. Li, TransIFC: Invariant cuesaware feature concentration learning f efficient finegrained bird image classification, IEEE T. Multimedia (2023). doi: 10.1109TMM.2023.3238548.
[33] Liu H., Fang S., Zhang Z.-L., Li D.-T.-CH., Lin K., Wang J.-ZH., Collaborative poses perception and matrix fisher distribution for head pose estimation MFDNet:. IEEE T. on Multimedia. 2021,, 24, 2449-2460(2021).
[35] H. Zhang , W. Su , Z. Wang, Weakly supervised localglobal attention wk f facial expression recognition, IEEE Access 8 (Feb. 2020) 3797637987.
[36] C. Liu, K. Hirota , J. Ma, et al., Facial expression recognition using hybrid features of pixel geometry, IEEE Access 9 (Jan. 2021) 1887618889.
[38] M. Jaderberg, K. Simonyan, A. Zisserman, K. Kavukcuoglu, Spatial transfmer wks, in: Proc. of the 28th Intl. Conf. on Neural Infmation Processing Systems, Montreal, Canada, 2015, pp. 2017–2025.
[41] Bargshady G., Zhou X.-J., Deo R.C., Soar J., Whittaker F., Wang H.. Enhanced deep learning algorithm development to detect pain intensity from facial expression images. Expert Syst. Appl., 149, 113305:1-10(2020).
[42] S. Walter, S. Gruss, H. Ehleiter, et al., The biovid heat pain database data f the advancement systematic validation of an automated pain recognition system, in: Proc. of the IEEE Intl. Conf. on Cyberics (CYBCO), Lausanne, Switzerl, 2013, pp. 128–131.
[43] R.J. Yang, S.J. Tong, M. Bdallo, et al., On pain assessment from facial videos using spatiotempal local des, in: Proc. of the Sixth Intl. Conf. on Image Processing They, Tools Applications (IPTA), Oulu, Finl, 2016, pp. 1–6.
[44] Huang D., Xia Z.-Q., Li L., Wang K.-W., Feng X.-Y.. Pain-awareness multistream convolutional neural network for pain estimation. J. Electron. Imaging, 28, 043008:1-10(2019).
[45] L. Pham, T.H. Vu, T.A. Tran, Facial expression recognition using residual masking wk, in: Proc. of the 25th Intl. Conf. on Pattern Recognition (ICPR), Milan, Italy, 2021, pp. 4513–4519.
[47] Z. Liu, J. Ning, Y. Cao, et al., Video swin transfmer, in: Proc. of the IEEECVF Conf. on Computer Vision Pattern Recognition, New leans, USA, 2022, pp. 3192–3201.
[48] J.W. Mao, R. Xu, X.S. Yin, Y.Q. Chang, B.L. Nie, A.B. Huang, POSTER++: A simpler stronger facial expression recognition wk [Online]. Available, https:arxiv.gabs2301.12149, February 2023.
[49] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, GradCAM: Visual explanations from deep wks via gradientbased localization, in: Proc. of the IEEE Intl. Conf. on Computer Vision, Venice, Italy, 2017, pp. 618–626.