• Optical Instruments
  • Vol. 45, Issue 6, 68 (2023)
Jinfeng WANG1,2, Bian LI1,2, and Mingyu SUN1,2,*
Author Affiliations
  • 1Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.202303030036 Cite this Article
    Jinfeng WANG, Bian LI, Mingyu SUN. Tunable photon sieve based on laser direct writing graphene oxide[J]. Optical Instruments, 2023, 45(6): 68 Copy Citation Text show less
    References

    [1] CHENG G X, HU C, XU P, et al. Zernike apodized photon sieves for high-resolution phase-contrast x-ray microscopy[J]. Optics Letters, 35, 3610-3612(2010).

    [2] ZHAO X N, XU F, HU J P, et al. Broadband photon sieves imaging with wavefront coding[J]. Optics Express, 23, 16812-16822(2015).

    [3] CHEN Z F, WANG C H, PU D L, et al. Ultra-large multi-region photon sieves[J]. Optics Express, 18, 16279-16288(2010).

    [4] KIPP L, SKIBOWSKI M, JOHNSON R L, et al. Sharper images by focusing soft X-rays with photon sieves[J]. Nature, 414, 184-188(2001).

    [5] LI Y X, WANG C A, ZHAO X N, et al. Multispectral and large bandwidth achromatic imaging with a single diffractive photon sieve[J]. Optics Express, 26, 21141-21152(2018).

    [6] PARK J, LEE K, PARK Y. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve[J]. Nature Communications, 10, 1304(2019).

    [7] XIE C Q, ZHU X L, JIA J. Focusing properties of hard X-ray photon sieves: three-parameter apodization window and waveguide effect[J]. Optics Letters, 34, 3038-3040(2009).

    [8] XIE C Q, ZHU H L, LI L L, et al. Feasibility study of hard-x-ray nanofocusing above 20 keV using compound photon sieves[J]. Optics Letters, 35, 4048-4050(2010).

    [9] LIU T, ZHANG X, WANG L J, et al. Fast and accurate focusing analysis of large photon sieve using pinhole ring diffraction model[J]. Applied Optics, 54, 5327-5331(2015).

    [10] LIU T, WANG L J, ZHANG J Z, et al. Numerical simulation and design of an apodized diffractive optical element composed of open-ring zones and pinholes[J]. Applied Optics, 57, 25-32(2018).

    [12] RODRIGUES V R M, DHARMADHIKARI J A, DHARMADHIKARI A K, et al. Direct femtosecond laser fabricated photon sieve[J]. OSA Continuum, 2, 1328-1341(2019).

    [13] LIU Y J, DAI H T, SUN X W, et al. Electrically switchable phase-type fractal zone plates and fractal photon sieves[J]. Optics Express, 17, 12418-12423(2009).

    [14] JAVADZADEH M, PANAHI F, KHOSHSIMA H. Tunable nematic liquid crystal PS-NPS lens[J]. Optics Communications, 450, 222-227(2019).

    [15] YÖNTEM A Ö, LI J F, CHU D P. Imaging through a projection screen using bi-stable switchable diffusive photon sieves[J]. Optics Express, 26, 10162-10170(2018).

    [16] HUANG K, LIU H, GARCIA-VIDAL F J, et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications, 6, 7059(2015).

    [17] DOLBIN A V, KHLISTYUCK M V, ESEL'SON V B, et al. The effect of the thermal reduction temperature on the structure and sorption capacity of reduced graphene oxide materials[J]. Applied Surface Science, 361, 213-220(2016).

    [18] WAN D Y, YANG C Y, LIN T Q, et al. Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications[J]. ACS Nano, 6, 9068-9078(2012).

    [19] LI W Y, LIU J G, YAN C W. Reduced graphene oxide with tunable C/O ratio and its activity towards vanadium redox pairs for an all vanadium redox flow battery[J]. Carbon, 55, 313-320(2013).

    [21] LOH K P, BAO Q L, EDA G, et al. Graphene oxide as a chemically tunable platform for optical applications[J]. Nature Chemistry, 2, 1015-1024(2010).

    [22] MA X G, WANG Y M, HAO X J, et al. Giant nonlinear optical response of graphene oxide thin films under the photochemical and photothermal reduction[J]. Advanced Materials Interfaces, 9, 2200890(2022).

    [23] WEI S B, CAO G Y, LIN H, et al. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region[J]. ACS Nano, 15, 4769-4776(2021).

    [24] WAN Z F, CHEN X, GU M. Laser scribed graphene for supercapacitors[J]. Opto-Electronic Advances, 4, 200079(2021).

    [25] LOW M J, LEE H, LIM C H J. Laser-induced reduced-graphene-oxide micro-optics patterned by femtosecond laser direct writing[J]. Applied Surface Science, 526, 146647(2020).

    [26] ANDERSEN G. Large optical photon sieve[J]. Optics Letters, 30, 2976-2978(2005).

    [27] JULIAN M N, MACDONNEL D G, GUPTA M C. Flexible binary phase photon sieves on polyimide substrates by laser ablation[J]. Optics Letters, 43, 2368-2371(2018).

    [28] JULIAN M N, MACDONNELL D G, GUPTA M C. High-efficiency flexible multilevel photon sieves by single-step laser-based fabrication and optical analysis[J]. Applied Optics, 58, 109-114(2019).